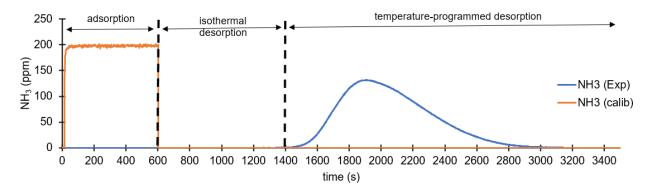
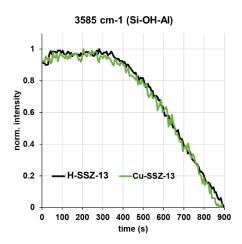
Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Revisiting NH₃ — Catalyst Interactions in Cu-SSZ-13 SCR Catalysts: An In-situ Spectro-Kinetics Study

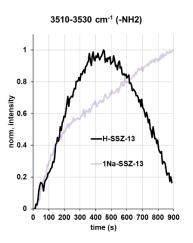
Daniyal Kiani *, Yuanzhou Xi, Nathan Ottinger, Z. Gerald Liu

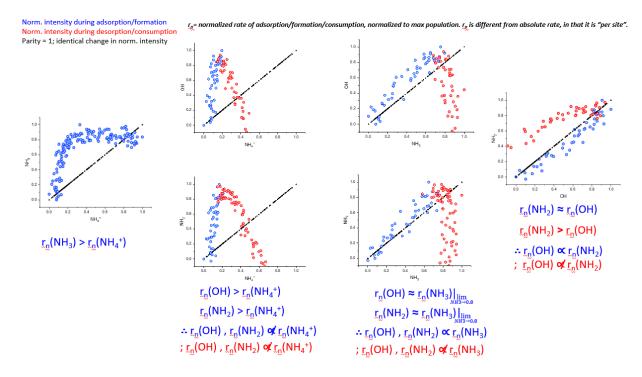

Cummins Emission Solutions, 1801 US Hwy 51/138, Stoughton, WI, 53589, USA

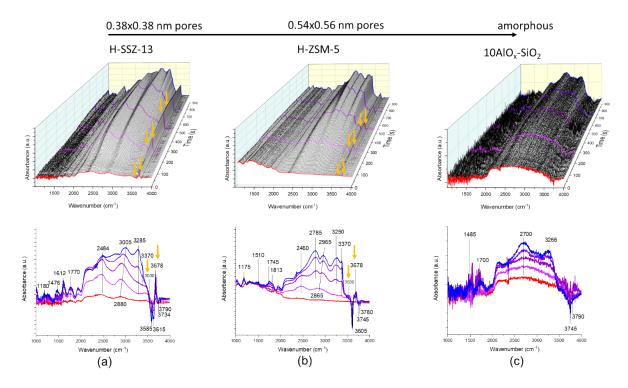
*corresponding author: daniyal.kiani@cummins.com,; ORCID: 0000-0002-9748-3007

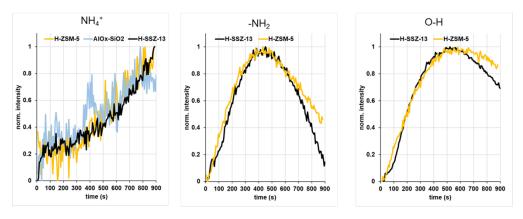

Electronic Supplemental Information

Catalyst	IR band (cm ⁻¹)	Assignment	Ref
Cu-SAPO-34	1460, 3283, 3333	NH4 ⁺	1
Cu-SAPO-34	1617, 3182, 3383	NH ₃	
Cu-SSZ-13	1454, 3262	NH4 ⁺	2
Cu-SSZ-13	1620, 3182,3352	NH ₃	
Cu-SSZ-13	3728	Si-OH	
Cu-SSZ-13	3610	Si-OH-AI	
Cu-SSZ-13	1449, 1493, 3273, 3355	NH4 ⁺	3
Cu-SSZ-13	1270, 1617, 3181	NH ₃	
Cu-SSZ-13	3682	Si-OH	
Cu-SSZ-13	3600	Si-OH-Al	
		· · · ·	
Cu-SSZ-13	1449, 1493, 3273, 3355	NH4 ⁺	4
Cu-SSZ-13	δ s (1150-1270), δas	NH ₃	
	(1617-1624), 3181		
Cu-SSZ-13	~3730-3750	Si-OH	
Cu-SSZ-13	~3600	Si-OH-Al	
Cu-SSZ-13	3650	-Cu-OH	
Cu-SSZ-13	3520, 3440, 1550-1510	-NH ₂	
Cu-SSZ-13	1700, 2770	NH ₄ ⁺ . <i>n</i> NH ₃	
	0075		5
	3375	Free NH stretching	5
	2000 2455 2025 2005	in NH ₃	
	3090-3155, 2875-2865	Evans windows; overtones of ~1450	
		and combination of	
		~1450, ~1650	
	3383	-stretching of free	
		NH in N ₂ H ₇ ⁺	
	1700	Bending of h	
		bonded N-H in	
		$N_2H_7^+$	
			,
SiO2	3526	N-H stretching in	6
		Si-O-NH ₂	


Table S 1. IR band assignments from the literature for NH_3 adsorbed on relevant catalytic systems.


Figure S 1. Representative NH₃ traces on pilot-reactor rig during 600s long adsorption step at 120°C, followed by 900s isothermal desorption step at 120°C, and finally by a TPD step from 120°C to 650°C at 10°C/min ramp rate. As described in eq (7) in the main text, NH₃ adsorbed/desorbed in each step is quantified by calculating the difference in areas under the blue (exp) and the orange (calibration) traces.


Figure S 2. normalized band intensities for O-H stretching of the BAS in SSZ-13 catalysts, corroborating the lack of BAS consumption in the first \sim 300s of NH₃ adsorption.


Figure S 3. normalized band intensities for the NH_2 transient species observed in SSZ-13-based catalysts during NH3 adsorption. Black lines correspond to H-SSZ-13, while purple lines to 1% Na-impregnated sample 1Na-SSZ-13. In both cases, catalyst was cleaned and dehydrated at 500°C for 1 hr in 10% O₂/Ar mixture before cooling down to 120°C, and conducting NH₃ adsorption according to protocol outlines in **Figure 4 main section**.

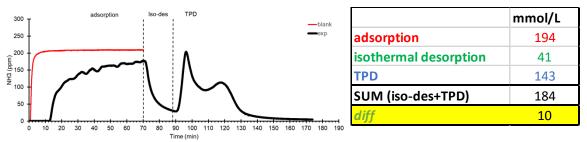

Figure S 4. Parity plot analysis of normalized intensities of various IR bands in Cu-SSZ-13 during NH_3 adsorption. For the two transient species (NH_2 , OH), the blue dots correspond to the time frame during which intensity of the respective bands was increasing, while red dots represent the time range when intensities decreased. The black dotted line signifies parity case i.e 1:1 evolution of the bands on x- and y-axes.

Figure S 5. temporally resolved in-situ DRIFTS during NH₃ adsorption on (a) H-SSZ-13 (SAR 15), (b) H-ZSM-5 (SAR 15), (c) $10\%AIO_x$ -SiO₂ samples, indicating that NH₂ and O-H bands (marked with yellow arrows) from NH₃ dissociation only evolve in the two zeolitic samples.

Figure S 6. Evolution of normalized IR band intensities of BAS-bound NH_4^+ , NH_2 and O-H intermediates in H-SSZ-13, H-ZSM-5, and amorphous 10% AIO_x -SiO₂. All samples exhibit NH_4^+ formation, but only the two zeolites exhibit NH_2 and O-H bands during NH_3 adsorption.

Figure S 7. Proof-of-concept NH₃ TPD on H-SSZ-13 powder diluted in cordierite (25% zeolite, 75% cordierite) to mimic wash-coated monolith type Cu-SSZ-13 pilot core tested in the study. Our results indicate ~10mmol_{NH3} L^{-1}_{cat} was consumed over H-SSZ-13, where the total adsorbed NH₃ capacity was ~193 mmol_{NH3} L^{-1}_{cat} . It suffices to note that to first approximation, the NH₃ consumed over Cu-SSZ-13 is approximately twice more than over H-SSZ-13, corroborating our DRIFTS results that NH₃ dissociates faster on Cu-SSZ-13 than H-SSZ-13. The NH₃ TPD was carried out in a micro reactor employing quartz 0.25" ID quartz tube. Experimental conditions were kept reasonably close to the pilot reactor study: ~40,000 hr⁻¹ SV, ~200ppm NH₃, 10°C/min ramp rate during TPD. Adsorption was conducted at 120°C, followed by isothermal desorption at 120°C, and finally by TPD under N₂ flow from 120°C to 600°C.

References

- (1) Wang, D.; Zhang, L.; Kamasamudram, K.; Epling, W. S. In Situ-DRIFTS Study of Selective Catalytic Reduction of NOx by NH3 over Cu-Exchanged SAPO-34. ACS Catal. 2013, 3 (5), 871–881. https://doi.org/10.1021/cs300843k.
- Zhu, H.; Kwak, J. H.; Peden, C. H. F. F.; Szanyi, J. In Situ DRIFTS-MS Studies on the Oxidation of Adsorbed NH3 by NOx over a Cu-SSZ-13 Zeolite. *Catal. Today* 2013, 205 (x), 16–23. https://doi.org/https://doi.org/10.1016/j.cattod.2012.08.043.
- (3) Ma, L.; Cheng, Y.; Cavataio, G.; McCabe, R. W.; Fu, L.; Li, J. In Situ DRIFTS and Temperature-Programmed Technology Study on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 Catalysts. *Appl. Catal. B Environ.* **2014**, *156*–*157*, 428–437. https://doi.org/10.1016/j.apcatb.2014.03.048.
- (4) Giordanino, F.; Borfecchia, E.; Lomachenko, K. A.; Lazzarini, A.; Agostini, G.; Gallo, E.; Soldatov, A. V; Beato, P.; Bordiga, S.; Lamberti, C. Interaction of NH3 with Cu-SSZ-13 Catalyst: A Complementary FTIR, XANES, and XES Study. *J. Phys. Chem. Lett.* **2014**, *5* (9), 1552–1559. https://doi.org/10.1021/jz500241m.
- Zecchina, A.; Marchese, L.; Bordiga, S.; Pazè, C.; Gianotti, E. Vibrational Spectroscopy of NH4+ Ions in Zeolitic Materials: An IR Study. *J. Phys. Chem. B* 1997, 101 (48), 10128–10135. https://doi.org/10.1021/jp9717554.
- (6) Peri, J. B. Infrared Study of OH and NH2 Groups on the Surface of a Dry Silica Aerogel. J. Phys. Chem. 1966, 70 (9), 2937–2945. https://doi.org/10.1021/j100881a037.
- (7) Greenaway, A. G.; Marberger, A.; Thetford, A.; Lezcano-González, I.; Agote-Arán, M.; Nachtegaal, M.; Ferri, D.; Kröcher, O.; Catlow, C. R. A.; Beale, A. M.

Detection of Key Transient Cu Intermediates in SSZ-13 during NH3-SCR DeNOx by Modulation Excitation IR Spectroscopy. *Chem. Sci.* **2020**, *11* (2), 447–455. https://doi.org/10.1039/c9sc04905c.