Electronic Supplementary Information (ESI)

For

Insight into the effects of calcination temperature on the structureperformance of RuO₂/TiO₂ in the Deacon process

Siyao Li,^a Bowen Xu,^a Yuexia Wang,^a Yupei Liu,^a Xinqing Lu,^{*a,b} Rui Ma,^{a,b} Yanghe Fu,^{a,b} Shuhua Wang,^c Liyang Zhou^c and Weidong Zhu^{*a,b,c}

^a Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People's Republic of China
 ^b Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People's Republic, People's Republic of China

^c National Engineering Technology Research Center of Fluoro-Materials, Zhejiang Juhua Technology Center Co., Ltd., 324004 Quzhou, People's Republic of China *To whom correspondence should be addressed.

Tel./Fax: +86 579 82282234; E-mail: <u>xinqinglu@zjnu.cn</u> (X. Lu); Tel./Fax: +86 579 82282932; E-mail: <u>weidongzhu@zjnu.cn</u> (W. Zhu)

Mass Transfer Calculation for HCl Oxidation over RuO₂/TiO₂

The effects of internal and external transfer limitations on reaction kinetics were evaluated by the Mears ($C_{\rm M}$) and Weisz-Prater ($C_{\rm WP}$) criteria, respectively,^{1,2} which were calculated using the following formulas:

$$C_{\rm M} = \frac{nr_{\rm obs}\rho_{\rm catal.}R_{\rm catal.}}{k_{\rm c}C_{\rm HCl}}$$
(S1)

$$C_{\rm WP} = \frac{r_{\rm obs} \rho_{\rm catal.} R_{\rm catal.}^2}{D_{\rm eff} C_{\rm HCl,s}}$$
(S2)

where *n* is the reaction order, r_{obs} is the observed reaction rate, $\rho_{catal.}$ is the bulk density of catalyst bed, $R_{catal.}$ is the particle radius of catalyst, k_c and D_{eff} are the external mass transfer coefficient and effective diffusion coefficient, respectively, C_{HCl} and $C_{HCl,s}$ are the bulk concentration of HCl and the HCl concentration on the surface of a catalyst particle, respectively. $C_{HCl,s}$ is equal to C_{HCl} when the external transfer limitation is excluded.

 k_c was estimated by the combination of Sherwood number *Sh*, the Reynolds number *Re*_p, and the Schmidt number *Sc* using the following formulas:

$$Sh = \frac{k_{\rm c} d_{\rm catal.}}{D_{\rm eff}} = 2 + 0.6 R e_{\rm p}^{1/2} S c^{1/3}$$
(S3)

$$Re_{\rm p} = \frac{U\rho d_{\rm catal.}}{\mu} \tag{S4}$$

$$Sc = \frac{\mu}{D_{\text{eff}}\rho}$$
 (S5)

Where $d_{\text{catal.}}$ is the catalyst particle size, U is the free-stream velocity, ρ and μ are the density and viscosity of a feed mixture, which can be obtained from Aspen Plus software.

 D_{eff} was estimated by the combination of the coefficients for Knudsen diffusion D_{A}^{K} and bulk diffusion D_{A}^{b} using the following formulas:

$$\frac{1}{D_{\rm eff}} = \frac{1}{D_{\rm A}^{\rm K}} + \frac{1}{D_{\rm A}^{\rm b}}$$
(S6)

$$D_{\rm A}^{\rm K} = \frac{2}{3} r_{\rm po} \sqrt{\frac{8 \text{RT} \varepsilon}{\pi M_{\rm i} \tau}}$$
(S7)

$$r_{\rm po} = 4 \frac{\varepsilon}{S_{\rm catal., p}}$$
(S8)

$$D_{\rm A}^{\rm b} = D_{\rm A} \frac{\varepsilon}{\tau}$$
 (S9)

where r_{po} , ε , τ , $S_{catal.}$, and $\rho_{catal.,g}$ are the average pore radius, porosity, tortuosity, surface areas, and grain density of catalyst, respectively, T and M_i are the temperature and relative molecular weight of component i, respectively, and D_A is the free diffusion coefficient, which can be obtained from Aspen Plus software.

The data used in the above-mentioned equations and the calculations of the Mears and Weisz-Prater parameters are shown in Tables S2 and S3. Both external and internal mass transfer limitations can be excluded for all the kinetic study cases, as $C_{\rm M}$ and $C_{\rm WP}$ are less than 0.15 and 1, respectively.

References

H.S. Fogler, Diffusion and reaction in Elements of Chemical Reaction Engineering;
 Pearson Education Inc.: New York, 2016, pp 734-743.

2. T.R. Marrero, E.A. Mason, Gaseous diffusion coefficients, Journal of Physical and Chemical Reference Data, 1972, 1, 1-118. Table S1 Physicochemical properties of TiO₂ and RuO₂/TiO₂ catalysts

Table S2 Measured reaction rates over RuO_2/TiO_2 catalysts at different reaction temperatures for E_a calculations

Table S3 Data for calculating the Mears and Weisz-Prater criterion parameters

Table S4 Evaluation of the Mears (C_M) and Weisz-Prater (C_{WP}) criterion parameters

Fig. S1 Wide-angle XRD patterns of RuO_2/TiO_2-150 (a), RuO_2/TiO_2-200 (b), RuO_2/TiO_2-250 (c), RuO_2/TiO_2-300 (d), and RuO_2/TiO_2-350 (e). The standard pattern

of rutile-type TiO₂ (JCPDS No. 21-1276) is shown at the bottom of the figure.

Fig. S2 SEM image of TiO₂.

Fig. S3 Ru 3d XPS spectrum of RuCl₃/TiO₂.

Fig. S4 Cl 2p XPS spectra of RuCl₃/TiO₂ (A), RuO₂/TiO₂-150 (B), RuO₂/TiO₂-200 (C), RuO₂/TiO₂-250 (D), RuO₂/TiO₂-300 €, and RuO₂/TiO₂-350 (F).

Fig. S5 EDX mapping images of Cl for RuCl₃/TiO₂ (A), RuO₂/TiO₂-150 (B), RuO₂/TiO₂-200 (C), RuO₂/TiO₂-250 (D), RuO₂/TiO₂-300 (E), and RuO₂/TiO₂-350 (F). **Fig. S6** TEM (A, E) and EDX mapping images of Ru (B, F), O (C, G), and Ti (D, H) for RuO₂/TiO₂-250 (A-D) and RuO₂/TiO₂-350 (E-H).

Fig. S7 Effects of HCl flow rate and reaction temperature on the catalytic activities in the oxidation of HCl with O₂ over different RuO₂/TiO₂ catalysts. Reaction conditions: catalyst particle sizes = 0.180-0.250 mm, WHSV (HCl) = 2933 h⁻¹, and molar ratio of HCl to O₂ = 4 : 1.

Fig. S8 Effects of catalyst particle size and reaction temperature on the catalytic activities in the oxidation of HCl with O_2 over different RuO₂/TiO₂ catalysts. Reaction

conditions: WHSV (HCl) = 2933 h^{-1} and molar ratio of HCl to $O_2 = 4 : 1$.

Fig. S9 Heat flow and MS signals in the microcalorimetric measurements on the pulse adsorption of O₂ on RuO₂/TiO₂-250 (A, B) and RuO₂/TiO₂-350 (C, D), respectively, as a function of time at 350 °C.

Fig. S10 Raman spectra of the fresh RuO_2/TiO_2 -350 (a) and the used RuO_2/TiO_2 -350

(b). The used catalyst represents the catalyst after 32 h of the reaction at 350 °C, and the reaction conditions were the same as those described in the caption of Fig. 4.

Fig. S11 Effects of WHSV on the oxidation of HCl over RuO_2/TiO_2 -250. Reaction conditions: molar ratio of HCl to $O_2 = 1 : 1$ and reaction temperature = 350 °C.

Samples	Ru loading ^a	$S_{\rm BET}{}^{\rm b}$	$S_{\rm ext}{}^{\rm c}$	$V_{\rm micro}^{\rm c}$	$V_{\rm total}{}^{\rm d}$
	(wt.%)	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$
TiO ₂	-	34.8	34.7	0.0	0.25
RuO ₂ /TiO ₂ -150	2.1	35.8	34.7	0.0	0.25
RuO ₂ /TiO ₂ -200	2.0	36.3	35.0	0.0	0.26
RuO ₂ /TiO ₂ -250	2.0	36.8	34.5	0.0	0.27
RuO ₂ /TiO ₂ -300	1.9	34.9	33.8	0.0	0.27
RuO ₂ /TiO ₂ -350	2.0	35.4	35.0	0.0	0.26

Table S1 Physicochemical properties of TiO₂ and RuO₂/TiO₂ catalysts

^a Determined from ICP-AES analysis.

 $^{\rm b}$ Determined from the measured N_2 adsorption-desorption isotherms at -196 °C using the Brunauer-Emmett-Teller (BET) method.

 $^{\rm c}$ Determined from the measured N_2 adsorption-desorption isotherms at -196 $^{\circ}{\rm C}$ using the *t*-plot method.

^d Determined from the N₂ adsorption isotherm at -196 °C using the single-point method at a relative pressure of 0.995.

Catalyst	Temperature	HCl conversion	on Reaction rate	
	(°C)	(%)	$(\times 10^{-4} \text{ mol g}^{-1} \text{ s}^{-1})$	
RuO ₂ /TiO ₂ -150	330	2.7	6.03	
	335	3.2	7.15	
	340	3.8	8.48	
	345	4.5	10.04	
	350	5.2	11.61	
	355	6.1	13.62	
	360	7.3	16.29	
RuO ₂ /TiO ₂ -200	330	3.3	7.37	
	335	3.9	8.63	
	340	4.5	10.04	
	345	5.3	11.83	
	350	6.1	13.62	
	355	7.1	15.85	
	360	8.2	18.30	
RuO ₂ /TiO ₂ -250	330	4.0	8.97	
	335	4.6	10.34	
	340	5.3	11.83	
	345	6.1	13.62	

Table S2 Measured reaction rates over RuO_2/TiO_2 catalysts at different reactiontemperatures for E_a calculations^a

	350	7.1	15.85
	355	7.9	17.63
	360	9.1	20.31
RuO ₂ /TiO ₂ -300	330	3.5	7.85
	335	4.1	9.16
	340	4.8	10.71
	345	5.5	12.28
	350	6.5	14.51
	355	7.4	16.52
	360	8.6	19.20
RuO ₂ /TiO ₂ -350	330	1.1	2.56
	335	1.4	3.10
	340	1.7	3.79
	345	2.0	4.46
	350	2.4	5.36
	355	2.9	6.47
	360	3.5	7.81

^a Reaction conditions: Catalyst particle sizes = 0.180-0.250 mm, V (HCl) = 300 mL min⁻¹, WHSV (HCl) = 2933 h⁻¹, molar ratio of HCl to $O_2 = 4 : 1$. The reaction rates were measured after 1 h of the reaction.

Parameters	Values
$ ho_{ m catal.}$	1141 kg m ⁻³
R _{catal} .	0.180-0.250 mm
$ ho_{ m catal.,g}$	4,260 kg m ⁻³
З	0.65
$ au^{\mathrm{a}}$	3

Table S3 Data for calculating the Mears and Weisz-Prater criterion parameters

^a The pore tortuosity is assumed as 3 for a spherical catalyst particle.

Catalyst	Temperature (°C)	C_{M}	C_{WP}
RuO ₂ /TiO ₂ -150	330	2.7×10 ⁻² -3.8×10 ⁻²	1.1×10 ⁻² -1.6×10 ⁻²
	335	3.2×10 ⁻² -4.4×10 ⁻²	1.3×10 ⁻² -1.9×10 ⁻²
	340	3.8×10 ⁻² -5.2×10 ⁻²	1.5×10 ⁻² -2.2×10 ⁻²
	345	4.5×10 ⁻² -6.1×10 ⁻²	1.8×10 ⁻² -2.6×10 ⁻²
	350	5.1×10 ⁻² -7.1×10 ⁻²	2.1×10 ⁻² -3.0×10 ⁻²
	355	6.0×10 ⁻² -8.3×10 ⁻²	2.4×10 ⁻² -3.5×10 ⁻²
	360	7.2×10 ⁻² -9.8×10 ⁻²	2.9×10 ⁻² -4.2×10 ⁻²
RuO ₂ /TiO ₂ -200	330	3.3×10 ⁻² -4.6×10 ⁻²	1.3×10 ⁻² -1.9×10 ⁻²
	335	3.9×10 ⁻² -5.4×10 ⁻²	1.6×10 ⁻² -2.3×10 ⁻²
	340	4.5×10 ⁻² -6.2×10 ⁻²	1.8×10 ⁻² -2.6×10 ⁻²
	345	5.3×10 ⁻² -7.2×10 ⁻²	2.1×10 ⁻² -3.1×10 ⁻²
	350	6.0×10 ⁻² -8.3×10 ⁻²	2.1×10 ⁻² -3.5×10 ⁻²
	355	7.0×10 ⁻² -1.1×10 ⁻¹	2.8×10 ⁻² -4.1×10 ⁻²
	360	8.1×10 ⁻² -2.1×10 ⁻²	3.3×10 ⁻² -4.7×10 ⁻²
RuO ₂ /TiO ₂ -250	330	4.0×10 ⁻² -5.6×10 ⁻²	1.6×10 ⁻² -2.4×10 ⁻²
	335	4.6×10 ⁻² -6.4×10 ⁻²	1.9×10 ⁻² -2.7×10 ⁻²
	340	5.3×10 ⁻² -7.3×10 ⁻²	2.1×10 ⁻² -3.1×10 ⁻²
	345	6.1×10 ⁻² -8.3×10 ⁻²	2.5×10 ⁻² -3.5×10 ⁻²
	350	7.0×10 ⁻² -9.6×10 ⁻²	2.8×10 ⁻² -4.1×10 ⁻²
	355	7.8×10 ⁻² -1.1×10 ⁻¹	3.2×10 ⁻² -4.5×10 ⁻²

Table S4 Evaluation of the Mears (C_M) and Weisz-Prater (C_{WP}) criterion parameters^a

	360	8.9×10 ⁻² -1.2×10 ⁻¹	3.6×10 ⁻² -5.2×10 ⁻²
RuO ₂ /TiO ₂ -300	330	3.5×10 ⁻² -4.9×10 ⁻²	1.4×10 ⁻² -2.1×10 ⁻²
	335	4.1×10 ⁻² -5.7×10 ⁻²	1.7×10 ⁻² -2.4×10 ⁻²
	340	4.8×10 ⁻² -6.6×10 ⁻²	1.9×10 ⁻² -2.8×10 ⁻²
	345	5.5×10 ⁻² -7.5×10 ⁻²	2.2×10 ⁻² -3.2×10 ⁻²
	350	6.4×10 ⁻² -8.8×10 ⁻²	2.6×10 ⁻² -3.8×10 ⁻²
	355	7.3×10 ⁻² -1.0×10 ⁻¹	3.0×10 ⁻² -4.3×10 ⁻²
	360	8.4×10 ⁻² -1.2×10 ⁻¹	3.4×10 ⁻² -4.9×10 ⁻²
RuO ₂ /TiO ₂ -350	330	1.1×10 ⁻² -1.5×10 ⁻²	4.5×10 ⁻³ -6.5×10 ⁻³
	335	1.4×10 ⁻² -1.9×10 ⁻²	5.7×10 ⁻³ -8.2×10 ⁻³
	340	1.7×10 ⁻² -2.3×10 ⁻²	6.9×10 ⁻³ -9.9×10 ⁻³
	345	2.0×10 ⁻² -2.7×10 ⁻²	8.1×10 ⁻³ -1.2×10 ⁻²
	350	2.4×10 ⁻² -3.3×10 ⁻²	9.6×10 ⁻³ -1.4×10 ⁻²
	355	2.9×10 ⁻² -3.9×10 ⁻²	1.2×10 ⁻² -1.7×10 ⁻²
	360	3.4×10 ⁻² -4.7×10 ⁻²	1.4×10 ⁻² -2.0×10 ⁻²

^a Reaction conditions: Catalyst particle sizes = 0.180-0.250 mm, V (HCl) = 300 mL min⁻¹, WHSV (HCl) = 2933 h⁻¹, molar ratio of HCl to $O_2 = 4 : 1$.

Fig. S1 Wide-angle XRD patterns of RuO_2/TiO_2-150 (a), RuO_2/TiO_2-200 (b), RuO_2/TiO_2-250 (c), RuO_2/TiO_2-300 (d), and RuO_2/TiO_2-350 (e). The standard pattern of rutile-type TiO₂ (JCPDS No. 21-1276) is shown at the bottom of the figure.

Fig. S2 SEM image of TiO₂.

Fig. S3 Ru 3d XPS spectrum of $RuCl_3/TiO_2$.

Fig. S4 Cl 2p XPS spectra of RuCl₃/TiO₂ (a), RuO₂/TiO₂-150 (b), RuO₂/TiO₂-200 (c), RuO₂/TiO₂-250 (d), RuO₂/TiO₂-300 (e), and RuO₂/TiO₂-350 (f).

Fig. S5 EDX mapping images of Cl for RuCl₃/TiO₂ (A), RuO₂/TiO₂-150 (B), RuO₂/TiO₂-200 (C), RuO₂/TiO₂-250 (D), RuO₂/TiO₂-300 (E), and RuO₂/TiO₂-350 (F).

Fig. S6 TEM (A, E) and EDX mapping images of Ru (B, F), O (C, G), and Ti (D, H) of RuO_2/TiO_2-250 (A-D) and RuO_2/TiO_2-350 (E-H).

Fig. S7 Effects of HCl flow rate and reaction temperature on the catalytic activities in the oxidation of HCl with O₂ over different RuO₂/TiO₂ catalysts. Reaction conditions: catalyst particle sizes = 0.180-0.250 mm, WHSV (HCl) = 2933 h⁻¹, and molar ratio of HCl to O₂ = 4 : 1.

Fig. S8 Effects of catalyst particle size and reaction temperature on the catalytic activities in the oxidation of HCl with O_2 over different RuO_2/TiO_2 catalysts. Reaction conditions: WHSV (HCl) = 2933 h⁻¹ and molar ratio of HCl to $O_2 = 4 : 1$.

Fig. S9 Heat flow and MS signals in the microcalorimetric measurements on the pulse adsorption of O_2 on RuO_2/TiO_2-250 (A, B) and RuO_2/TiO_2-350 (C, D), respectively, as a function of time at 350 °C.

Fig. S10 Raman spectra of the fresh RuO_2/TiO_2 -350 (a) and the used RuO_2/TiO_2 -350 (b). The used catalyst represents the catalyst after 32 h of the reaction at 350 °C, and the reaction conditions were the same as those described in the caption of Fig. 4.

Fig. S11 Effects of WHSV on the oxidation of HCl over RuO_2/TiO_2-250 . Reaction conditions: molar ratio of HCl to $O_2 = 1 : 1$ and reaction temperature = 350 °C.