Supplementary information

Primary amines from lignocellulose by direct amination of alcohol intermediates, catalyzed by Raney Ni

Xianyuan Wu¹, Mario De bruyn², and Katalin Barta^{1,2*}

¹ Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, The Netherlands

² Institute for Chemistry, University of Graz, Heinrichstrasse 28/II, 8010, Graz, Austria

*Correspondence: Katalin Barta (k.barta@rug.nl, katalin.barta@uni-graz.at)

Table of contents

1.	Calculation of conversion, selectivity and yield
2.	Additional supporting information to the identification of the optimal reaction conditions
	for the Raney nickel catalyzed 1G amination3
3.	Assigned GC-FID traces for the Raney nickel catalyzed 1G amination5
4.	Supporting ¹ H and ¹³ C NMR spectra6
5.	List of the spectral and spectrometric data of the isolated compounds

1. Calculation of conversion, selectivity and yield

For the calculation of conversion based on GC:

Conversion

(%)

Sum of all the product peak areas

[(Sum of all the product peak areas) + the peak area of the remaining \times

100%

For the calculation of selectivity based on GC:

 $\frac{The \ peak \ area \ of \ the \ target \ product}{Selectivity (\%) = } \times \frac{Sum \ of \ all \ the \ product \ peak \ areas}{100\%} \times \frac{100\%}{100\%}$

For the calculation of yield based on GC:

Yield (%) =selectivity × *conversion*

Isolated yield (%) is based on the effective dry weight of an HCl salt of target amine

2. Additional supporting information to the identification of the optimal reaction conditions for the Raney nickel catalyzed 1G amination

Table S1. Performance of a range of commercially available heterogeneous catalysts in the catalytic amination of **1G** to **1G amine** using ammonia.^[a]

Entry	catalyst	Conv. ^[b]		Sel. (%) ^[b]						
		(%)	1G amine	4-Ethy guaiacol	1G nitrile	1G amide	1G dimer amine	Yield ^[b] (%)		
1	Pd/C	2.7	-	-	98.8	1.2	-	-		
2	Pt/C	1.8	-	-	97.6	2.4	-	-		
3	Rh/C	1.2	-	-	98.5	1.5	-	-		
4	Ru/Al_2O_3	0.8	-	-	98.5	1.5	-	-		
5	Ni/SiO ₂ -Al ₂ O ₃	6.6	-	7.2	92.8	-	-	-		
6	Ni/SiO ₂	5.9	-	6.7	93.3	-	-	-		
7	Raney Ni	87.6	91.4	4.5	-	1.0	1.4	74.7 (69.8) ^[c]		
F 7 D	1	110	100	. 1 . 0 5	т. 1	1 1 1 1 7 7		NTTT 101		

[a]. Reaction conditions: 0.5 mmol **1G**, 100 mg catalyst, 2.5 mL *t*-amyl alcohol, 150 °C, 7 bar NH₃, 18 h [b]. Conversion, selectivity, and yield were all determined by GC-FID

[c]. Isolated yield in parentheses

Table S2. Influence of the reaction temperature on the catalytic amination of 1G to 1G amine using ammonia.^[a]

Entry	Temp.	Conv. ^[b]		Sel. (%) ^[b]								
	(°C)	(%)	1G amine	4-ethy guaiacol	1G nitrile	1G amide	1G dimer amine	yield ^[c] (%)				
1	120	1.4	45.2	21.0	1.4	32.4	-	0				
2	130	44.6	90.6	3.5	-	1.9	4.0	33.1				
3	140	73.7	88.9	4.7	-	3.3	3.1	49.6				
4	150	87.6	91.4	4.5	-	2.7	1.4	69.8				
5	160	94.6	90.2	6.3	-	2.3	1.2	75.8				

Table S3. Influence of the reaction time on the catalytic amination of 1G to 1G amine using ammonia.^[a]

Entry	Time	Conv. ^[b]		Sel. (%) ^[b]							
	(h)	(%)	1G amine	4-ethy guaiacol	1G nitrile	1G amide	1G dimer amine	yield ^[c] (%)			
1	1	15.9	85.8	7.8	1.3	4.9	0.2	5.8			
2	3	45.5	84.2	6.1	1.1	4.3	4.3	28.2			
3	5	58.2	83.9	6.1	0.8	5.4	3.8	37.6			
4	8	69.5	84.4	5.7	0.6	6.6	2.7	54.2			
5	12	86.6	87.8	4.7	0.5	3.6	3.4	61.7			
6	18	94.6	90.2	6.3	-	2.3	1.2	75.8			

[a]. Reaction conditions: 0.5 mmol **1G**, 100 mg Raney Ni, 2.5 mL *t*-amyl alcohol, 160 °C, 7 bar NH_{3} , 1-18 h [b]. Conversion and selectivity were all determined by GC-FID

Table S4. Influence of ammonia pressure on the catalytic amination of 1G to 1G amine using ammonia.^[a]

Entry	Ammonia	Conv. ^[b]		Sel. (%) ^[b]						
	pressure	(%)	1G	4-ethy	1 G	1 G	1G	yield ^[c]		
	(Bar)		amine	guaiacol	nitrile	amide	dimer amine	(70)		
1	Atmospheric	70	-	> 99	-	-	-	-		
	Pressure									
2	7	94.6	90.2	6.3	-	2.3	1.2	75.8		
	action condition	a. 0.5 mm	1 1C 100	ma Danay	N: 25 m	I tomul	alashal 160 °C	atmagnharia		

[a]. Reaction conditions: 0.5 mmol 1G, 100 mg Raney Ni, 2.5 mL *t*-amyl alcohol, 160 °C, atmospheric pressure and 7 bar NH_{3} , 18 h.

[b]. Conversion and selectivity were all determined by GC-FID

Table S5. Influence of catalyst loading on the catalytic amination of 1G to 1G amine using ammonia.[a]

Entry	Catalys	Conv. ^[b]		Sel. (%) ^[b]								
	loading	(%)	1G amine	4-ethy guaiacol	1G nitrile	1G amide	1G dimer amine	yield ^[c] (%)				
1	20	25.8	88.6	6.0	-	3.8	1.6	10.7				
2	50	66.2	87.8	5.6	-	4.6	2.0	40.3				
3	100	94.6	90.2	6.3	-	2.3	1.2	75.8				

[a]. Reaction conditions: 0.5 mmol **1G**, 20-100 mg Raney Ni, 2.5 mL *t*-amyl alcohol, 160 °C, 7 bar NH₃, 18 h. [b]. Conversion and selectivity were all determined by GC-FID

Table S6. Influence of substrate loading on the catalytic amination of 1G to 1G amine using ammonia.^[a]

Entry	substrate	Conv. ^[b]		Sel. (%) ^[b]							
	loading	(%)	1G	4-ethy	1G	1G	1G	yield ^[c]			
	(mg)		amine	guaiacol	nitrile	amide	dimer amine	(%)			
1	500	86.6	80.5	14.4	0	2.8	4.4	55.8			
[a]. Rea	[a]. Reaction conditions: 500 mg 1G, 500 mg Raney Ni, 8 mL <i>t</i> -amyl alcohol, 160 °C and 7 bar NH ₃ , 18 h.										

[b]. Conversion and selectivity were all determined by GC-FID

3. Assigned GC-FID traces for the Raney nickel catalyzed 1G amination

Figure S1. **GC-FID** traces for the Raney nickel catalyzed **1G** amination. Reaction conditions: A) 100 mg Raney nickel catalyst, 0.5 mmol **1G**, 2.5 mL *t*-amyl alcohol, 7 bar NH₃, 160 °C, 3 h. B) 100 mg Raney nickel catalyst, 0.5 mmol **1G**, 2.5 mL *t*-amyl alcohol, 7 bar NH₃, 160 °C, 18 h.

4. Supporting ¹H and ¹³C NMR spectra

Figure S2. ¹H NMR spectrum of 1S.

Figure S3. ¹³C NMR spectrum of 1S.

Figure S4. ¹H NMR spectrum of 1G.

Figure S5. ¹³C NMR spectrum of 1G.

Figure S6. ¹H NMR spectrum of 1H amine (as the HCl ammonium salt)

Figure S7. ¹³C NMR spectrum of 1H amine (as the HCl ammonium salt)

Figure S8. ¹H NMR spectrum of 1G amine (as the HCl ammonium salt)

Figure S9. ¹³C NMR spectrum of 1G amine (as the HCl ammonium salt)

Figure S10. ¹H NMR spectrum of 1S amine (as the HCl ammonium salt)

Figure S11. ¹³C NMR spectrum of 1S amine (as the HCl ammonium salt)

Figure S12. ¹H NMR spectrum of 1a (as the HCl ammonium salt)

Figure S13. ¹³C NMR spectrum of 1a (as the HCl ammonium salt)

Figure S14. ¹H NMR spectrum of 2a (as the HCl ammonium salt)

Figure S15. ¹³C NMR spectrum of 2a (as the HCl ammonium salt)

Figure S16. ¹H NMR spectrum of 3a (as the HCl ammonium salt)

Figure S17. ¹³C NMR spectrum of **3a** (as the HCl ammonium salt)

Figure S18. ¹H NMR spectrum of 4a

Figure S19. ¹³C NMR spectrum of 4a

Figure S20. ¹H NMR spectrum of 5a

Figure S21. ¹³C NMR spectrum of 5a

Figure S22. ¹H NMR spectrum of 6a (as the HCl ammonium salt)

Figure S23. ¹³C NMR spectrum of 6a (as the HCl ammonium salt)

Figure S24. ¹H-NMR spectrum of 7a (as the HCl ammonium salt)

Figure S25. ¹³C NMR spectrum of 7a (as the HCl ammonium salt)

Figure S26. ¹H NMR spectrum of 8a (as the HCl ammonium salt)

Figure S27. ¹³C NMR spectrum of 8a (as the HCl ammonium salt)

Figure S28. ¹H NMR spectrum of 9a (as the HCl ammonium salt)

Figure S29. ¹³C NMR spectrum of 9a (as the HCl ammonium salt)

Figure S30. ¹H NMR spectrum of 10a (as the HCl ammonium salt)

Figure S31. ¹³C NMR spectrum of 10a (as the HCl ammonium salt)

Figure S32. ¹H NMR spectrum of 11a (as the HCl ammonium salt)

Figure S33. ¹³C NMR spectrum of 11a (as the HCl ammonium salt)

Figure S34. ¹H NMR spectrum of 12a (as the HCl ammonium salt)

Figure S35. ¹³C NMR spectrum of 12a (as the HCl ammonium salt)

Figure S36. ¹H NMR spectrum of 13a (as the HCl ammonium salt)

Figure S37. ¹³C NMR spectrum of 13a (as the HCl ammonium salt)

Figure S38. ¹H NMR spectrum of 1B (as the HCl ammonium salt)

Figure S39. ¹³C NMR spectrum of 1B (as the HCl ammonium salt)

Figure S40. ¹H NMR spectrum of 2B

Figure S41. ¹³C NMR spectrum of 2B

Figure S42. ¹H NMR spectrum of 3B

Figure S43. ¹³C NMR spectrum of **3B**

Figure S44. ¹H NMR spectrum of 4B (as the HCl ammonium salt)

Figure S45. ¹³C NMR spectrum of 4B (as the HCl ammonium salt)

Figure S46. ¹H NMR spectrum of 5B

Figure S47. ¹³C NMR spectrum of 5B

Figure S48. ¹H NMR spectrum of 6B

Figure S49. ¹³C NMR spectrum of 6B

<u>_</u>0

HO

5. List of the spectral and spectrometric data of the isolated compounds

NMR (75 MHz, D_2O) δ 147.68, 132.83, 132.08, 105.84, 56.23, 38.90, 31.79, 28.52. **HRMS** (APCI⁺, m/z) calculated for (M-H)⁻ 246.089759; found: 246.090245.

4-(3-Aminopropyl)phenol hydrochloride (**1HA**), isolated yield: 53.4 %. ¹H NMR (300 MHz, D₂O) δ 7.10 – 6.97 (d, 2H), 6.79 – 6.68 (d, 2H), 2.85 (t, *J* = 7.7 Hz, 2H), 2.51 (t, *J* = 7.7 Hz, 2H), 1.80 (tt, *J* = 9.2, 6.8 Hz, 2H). ¹³C NMR (75 MHz, D₂O) δ 153.67, 132.74, 129.65, 115.37, 38.91, 30.83, 28.59. **HRMS** (APCI⁺, m/z) calculated for (M-H)⁻ 186.068999; found: 186.069115.

 $NH_2 \cdot HCI$ Cyclohexanamine hydrochloride (1a), isolated yield: 90.2 %. ¹H NMR (300 MHz, D₂O)

 δ 3.15 - 2.89 (m, 1H), 1.87 (m, J = 8.7, 4.7 Hz, 2H), 1.78 - 1.61 (m, 2H), 1.59 - 1.47 (m, 1H), 1.32 - 0.98 (m, 5H). ¹³C NMR (75 MHz, D₂O) δ 50.32, 30.28, 24.24, 23.75.

 HRMS (APCI⁺, m/z) calculated for (M+Cl)⁻ 170.05049; found: 170.050878.

2-Methylcyclohexanamine hydrochloride (2a) (20cis/80trans), isolated yield: 68.2 %. ¹H NMR (300 MHz, D₂O) δ 3.27 (m, J = 6.1, 4.1 Hz, 0.2H), 2.70 (m, J = 11.0, 3.9 Hz, 0.8H), 2.01 – 1.78 (m, 1H), 1.73 – 0.79 (m, 11H). ¹³C NMR (75 MHz, D₂O) δ 56.45, 52.85, 35.78, 33.14, 31.10, 30.58, 24.64, 24.18, 17.56. **HRMS** (APCI⁺, m/z) calculated for (M+Cl)⁻ 184.066248; found: 184.066529 (The rest of 5 cis-carbon signals were not detected because of cis in low quantities or overlapping with trans-carbon signals).

 $\begin{array}{l} \mbox{NH}_2 \mbox{-}\mbox{HCI} \\ \mbox{(300 MHz, D}_2 O) \ \delta \ 2.83 \ (d, \ J = 7.6 \ Hz, \ 2H), \ 2.02 \ (m, \ J = 7.9 \ Hz, \ 1H), \ 1.80 - 1.65 \\ \mbox{(m, 2H), } \ 1.59 - 1.41 \ (m, \ 4H), \ 1.24 - 0.94 \ (m, \ 2H). \ ^{13} C \ NMR \ (75 \ MHz, \ D_2 O) \ \delta \end{array}$

44.20, 37.43, 29.66, 24.56. **HRMS** (APCI⁺, m/z) calculated for (M+Cl)⁻ 170.05049; found: 170.050878.

2-Tetrahydrofuranylmethanamine hydrochloride (4a), isolated yield: 45.1 %. ¹H NMR (300 MHz, D₂O) δ 4.09 (m, J = 10.0, 6.7, 3.4 Hz, 1H), 3.83 – 3.65 (m, 2H), 3.07 – 2.98 (m, 1H), 2.87 (dd, J = 13.2, 8.7 Hz, 1H), 2.09 – 1.93 (m, 1H), 1.93 – 1.74 (m, 2H), 1.60 – 1.47 (m, 1H). ¹³C NMR (75 MHz, D₂O) δ 74.80, 68.24, 42.62, 28.20, 24.91. HRMS (APCI⁺, m/z) calculated for (M+Cl)⁻ 172.066667; found: 172.066529.

 $NH_2 \cdot HCI$ Cyclopentanamine hydrochloride (5a), isolated yield: 62.8 %. ¹H NMR (300 MHz, D₂O) δ 3.54 (m, J = 7.2, 5.4 Hz, 1H), 2.01 – 1.87 (m, 2H), 1.69 – 1.43 (m, 6H). ¹³C NMR (75MHz, D₂O) δ 52.07, 30.49, 23.48. HRMS (APCI⁺, m/z) calculated for (M+Cl)-156.035254; found: 156.035228.

NH₂· HCl 2-Methylcyclopentan-1-amine hydrochloride (**6a**) (22cis/78trans),Isolated yield: 58.6 %. ¹H NMR (300 MHz, D₂O) δ 3.47 (m, J = 6.8, 4.5 Hz, 0.2 H), 3.24 – 2.93 (m, 0.8 H), 2.05 – 0.85 (m, 10H). ¹³C NMR (75 MHz, D₂O) δ 58.45, 55.27, 38.95, 35.72, 32.23, 30.76, 30.03, 29.50, 21.86, 21.32, 17.12, 12.96. **HRMS** (APCI⁺, m/z) calculated for (M+Cl)⁻

170.050853 found: 170.050878.

2-Methylpentan-1-amine hydrochloride (7a), isolated yield: 54.4 %. ¹H NMR (300 MHz, D₂O) δ 2.84 (m, J = 12.7, 6.0 Hz, 1H), 2.68 (m, J = 12.7, 7.8 Hz, 1H), 1.72 (dt, J = 11.8, 6.5 Hz, 1H), 1.33 – 1.04 (m, 4H), 0.80 (dd, J = 29.0, 6.8 Hz, 6H). ¹³C NMR (75 MHz, D₂O) δ 45.03, 35.26, 30.55, 18.94, 16.08, 13.22. **HRMS** (APCI⁺, m/z) calculated for (M+Cl)⁻ 172.067; found: 172.066529.

NH2* HCI

2-Ethylbutanamine hydrochloride (**8a**), isolated yield: 51.6 %. ¹H NMR (300 MHz, D₂O) δ 2.83 (d, J = 6.6 Hz, 2H), 1.48 (m, J = 6.5 Hz, 1H), 1.37 – 1.20 (m, 4H), 0.76 (t, J = 7.4 Hz, 6H). ¹³C NMR (75 MHz, D₂O) δ 41.92, 38.39, 22.31,

9.52. HRMS (APCI⁺, m/z) calculated for (M+Cl)⁻172.0666667; found: 172.066529.

2-Methylbutanamine hydrochloride (**9a**), isolated yield: 43.5 %. ¹H NMR (300 MHz, D₂O) δ 2.85 (m, J = 12.7, 6.1 Hz, 1H), 2.68 (m, J = 12.7, 7.8 Hz, 1H), 1.71 – 1.53 (m, 1H), 1.31 (m, J = 13.0, 7.5, 5.5 Hz, 1H), 1.21 – 1.04 (m, 1H), 0.89 – 0.70 (m, 6H). ¹³C NMR (75 MHz, D₂O) δ 44.68, 32.46, 25.92, 15.71, 10.04. **HRMS** (APCI⁺, m/z) calculated for (M+Cl)⁻158.050786; found: 158.050878.

2-Methylpropanamine hydrochloride (**10a**), isolated yield: 43.8 %. ¹H NMR (300 MHz, D₂O) δ 2.72 (d, J = 7.2 Hz, 2H), 1.83 (m, J = 13.7, 6.8 Hz, 1H), 0.86 (d, J = 6.7 Hz, 6H). ¹³C NMR (75 MHz, D₂O) δ 46.28, 26.22, 18.77. **HRMS** (APCI⁺, m/z) calculated for (M+Cl)⁻144.035296; found: 144.035228.

2-Butanamine hydrochloride (**11a**), isolated yield: 44.4 %. ¹H NMR (300 MHz, D₂O) δ 3.17 (m, J = 6.7 Hz, 1H), 1.66 – 1.37 (m, 2H), 1.16 (d, J = 6.7 Hz, 3H), 0.84 (t, J = 7.5 Hz, 3H). ¹³C NMR (75 MHz, D₂O) δ 49.14, 27.10, 17.15, 8.91. **HRMS** (APCI⁺, m/z) calculated for (M+Cl)⁻144.03498; found: 144.035228.

 $\begin{array}{c} \label{eq:head} \begin{array}{c} \mbox{2-Butanamine hydrochloride (12a), isolated yield: 51.8 \%. ^{1}H NMR (300 \\ \mbox{MHz, D_2O} \ \delta \ 2.97 - 2.80 \ (t, \ 2H), \ 1.60 - 1.44 \ (m, \ 2H), \ 1.36 - 1.18 \ (m, \ 2H), \\ \mbox{0.81 (t, J = 7.4 Hz, \ 3H). } ^{13}C NMR \ (75 \ MHz, \ D_2O) \ \delta \ 39.17, \ 28.67, \ 18.91, \ 12.66. \ HRMS \ (APCI^+, \ m/z) \\ \ calculated \ for \ (M+Cl)^- \ 144.035425; \ found: \ 144.035228. \end{array}$

 $\begin{array}{c} \mbox{Pentanamine hydrochloride (13a), isolated yield: 64.2 \%. ^1H NMR (300 \\ \mbox{MH}_2 \cdot HCl \\ \mbox{MH}_2 \cdot HCl \\ \mbox{MH}_2, D_2O) \ \delta \ 2.87 \ (t, \ J = 7.6 \ Hz, \ 2H), \ 1.54 \ (m, \ J = 7.5 \ Hz, \ 2H), \ 1.23 \ (m, \ J = 7.7, \ 4.0 \ Hz, \ 4H), \ 0.86 - 0.69 \ (m, \ 3H). \ ^{13}C \ NMR \ (75 \ MHz, \ D_2O) \ \delta \ 39.43, \ 27.65, \ 26.30, \ 21.39, \ 13.00. \\ \mbox{HRMS} \ (APCI^+, \ m/z) \ calculated \ for \ (M+Cl)^- \ 158.051083; \ found: \ 158.050878. \end{array}$

4-(3-aminopropyl)benzene-1,2-diol hydrochloride (1B), isolated yield: 92 %. ¹H HO NMR (300 MHz, D2O) δ 6.74 (d, J = 8.1 Hz, 1H), 6.69 (d, J = 2.1 Hz, 1H), 6.59 ·HCI нΟ (dd, J = 8.0, 2.2 Hz, 1H), 2.91 – 2.77 (m, 2H), 2.48 (t, J = 7.6 Hz, 2H), 1.80 (m, J = 9.2, 6.9 Hz, 2H). ¹³C NMR (75 MHz, D₂O) δ 143.89, 142.09, 133.69, 120.57, 116.24, 116.11, 38.93, 30.99, 28.48. HRMS (APCI⁺, m/z) calculated for (M+H)⁻ 168.102073; found: 168.101905

4-hydroxy-N-(3-(4-hydroxy-3-methoxyphenyl)propyl)-3-methoxybenzamide (2B), isolated yield: 94.8 %. ¹H NMR (300 MHz, MeOH-d4) δ 7.42 (d, J = 2.1 Hz, 1H), 7.33 (dd, J = 8.3, 2.1 Hz, 1H), 6.88 – 6.79

(m, 2H), 6.74 - 6.63 (m, 2H), 3.91 (s, 3H), 3.83 (s, 3H), 3.39 (t, J = 7.1 Hz, 2H), 2.63 (t, J = 7.6 Hz, 2H), 2.63 (t, J = 7.6 Hz, 2H)2H), 1.98 – 1.86 (m, 2H). ¹³C NMR (75 MHz, MeOH-d4) δ 168.66, 149.75, 147.46, 147.37, 144.18, 133.27, 133.58, 120.50, 120.37, 114.69, 114.40, 111.69, 110.46, 55.01, 54.90, 39.33, 32.58, 31.15. **HRMS** (APCI⁺, m/z) calculated for (M+H)⁻ 332.149507; found: 332.149249.

(E)-3-(4-hydroxy-3-methoxyphenyl)-N-(3-(4-hydroxy-3-methoxyphenyl)propyl)acrylamide (3B), isolated yield: 83.0 %. ¹H NMR $(300 \text{ MHz}, \text{MeOH-d4}) \delta 7.51 - 7.41 \text{ (d, 1H)}, 7.13 \text{ (d, J = 2.0 Hz},$

1H), 7.03 (dd, J = 8.3, 2.0 Hz, 1H), 6.83 -6.64 (dd, 4H), 6.45 (d, J = 15.7 Hz, 1H), 3.86 (d, J = 15.1 Hz, 6H), 3.30 (d, J = 6.9 Hz, 2H), 2.59 (q, J = 7.1 Hz, 2H), 1.85 (m, J = 8.9, 6.8 Hz, 2H). ¹³C NMR (75 MHz, MeOH-d4) δ 167.80, 148.41, 147.87, 147.46, 144.20, 140.56, 133.13, 126.87, 121.79, 120.39, 117.39, 115.06, 114.71, 111.70, 110.08, 54.96, 54.92, 46.77, 38.76, 32.41. HRMS (APCI⁺, m/z) calculated for (M+H)⁻ 358.165323; found: 358.164899

Methyl 2-(4-(3-aminopropyl)-2-methoxyphenoxy)acetate hydrochloride (4B), isolated yield: 61.2 %.¹H NMR (300 MHz, D₂O) δ 6.87 (d, J = 1.9 NH₂ Hz, 1H), 6.79 - 6.68 (m, 2H), 4.66 (s, 2H), 3.75 (s, 3H), 3.68 (s, 3H), 2.88 (q, J = 7.7, 7.1 Hz, 2H), 2.61 – 2.50 (m, 2H), 1.85 (m, J = 7.4 Hz, 2H). ¹³C NMR (75 MHz, D₂O) δ 171.71, 148.40, 144.63, 135.48, 120.62, 113.51, 112.70, 65.62, 55.67, 52.63, 38.88, 31.32, 28.41. HRMS (APCI⁺, m/z) calculated for (M+H)⁻ 254.13895; found: 254.138685.

3-(3-methoxy-4-(oxiran-2-ylmethoxy)phenyl)-N,N-bis(oxiran-2-ylmethyl)propan-1-amine (5B), isolated yield: 34.8 %. ¹H NMR (300 MHz, $CDCl_3$) δ 6.84 (d, J = 8.0 Hz, 1H), 6.77 – 6.63 (m, 2H), 4.20 (dd, J =

11.4, 3.6 Hz, 1H), 4.01 (dd, J = 11.4, 5.5 Hz, 1H), 3.86 (s, 3H), 3.37 (m, J = 5.5, 3.9, 2.6 Hz, 1H), 3.18 -2.83 (m, 5H), 2.82 - 2.27 (m, 11H), 1.80 (m, J = 7.1, 3.2, 1.4 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 149.48, 146.07, 136.16, 136.12, 120.26, 114.38, 112.35, 77.24, 70.48, 57.43, 56.82, 55.91, 54.78, 54.49, 51.20, 50.54, 50.29, 45.08, 45.01, 44.89, 33.15, 33.11, 29.07, 28.91.

N-(3-(4-hydroxy-3-methoxyphenyl)propyl)acrylamide (**6B**), isolated yield: 85.2 %. ¹H NMR (300 MHz, MeOH-d4) δ 6.79 (d, *J* = 1.9 Hz, 1H), 6.71 (d, *J* = 8.0 Hz, 1H), 6.64 (dd, *J* = 8.0, 2.0 Hz, 1H), 6.34 – 6.12 (m, 2H), 5.65

(dd, J = 8.3, 3.7 Hz, 1H), 3.84 (s, 3H), 3.27 (t, J = 7.1 Hz, 2H), 2.58 (dd, J = 8.5, 6.8 Hz, 2H), 1.83 (m, J = 7.6, 6.5 Hz, 2H).¹³C NMR (75 MHz, MeOH-d4) ¹³C NMR (75 MHz, CDCl₃) δ 149.48, 146.07, 136.12, 120.26, 114.38, 112.35, 70.48, 57.43, 56.82, 55.91, 54.78, 54.49, 51.20, 50.54, 50.29, 45.08, 44.89, 33.15, 29.07.