Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Nitrogen and sulfur co-doping CeO₂ nanorods for efficient photocatalytic VOCs

degradation

Hui Yang^{a, c}, Lu Jia^a, Jun Haraguchi^c, Yue Wang^a, Bin Xu^{a, *}, Qitao Zhang^{b, *}, Zhaodong Nan^a, Ming Zhang^a, Teruhisa Ohno^{c, *}

^a School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China

^b International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China

^c Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan

*Corresponding authors: twt@yzu.edu.cn (Bin Xu); qitao-zhang@szu.edu.cn (Qitao Zhang); tohno@che.kyutech.ac.jp (Teruhisa Ohno)

Figure S1. FE-SEM images of (a-c) undoped CeO₂ and (d-f) NS-CeO₂ samples annealed under different temperature conditions, respectively.

Figure S2. Selected area EDS spectrum of NS-CeO₂ sample annealed at 700°C condition.

Figure S3. Wide scanning XPS survey spectra of undoped CeO₂ and NS-CeO₂ samples annealed at 700°C condition.

Figure S4. Mott-Schottky (M-S) plots of undoped CeO₂ and NS-CeO₂ samples annealed at 700°C condition.

Figure S5. Ultraviolet photoelectron spectroscopy (UPS) signals of NS-CeO₂ and undoped CeO₂ samples annealed at 700°C condition.

According to the linear intersection method, the valence band (E_{VB}) of NS-CeO₂ was calculated to be 6.91 eV (vs. vacuum) from (E_{Photo} - (E_{Cutoff} - E_{Fermi}) (E_{Photo} = 21.22 eV, the excitation energy of the He I). According to the reference standard of the electron volts convert to electrochemical energy potentials in volts, 0 V versus RHE (reversible hydrogen electrode) corresponding to -4.44 eV versus evac (vacuum level). Then combined with the bandgap value calculated from Tauc plot analysis of NS-CeO₂ (E_g = 2.98 eV), the corresponding conduction band (CB) value is further calculated by the equation $E_{CB} = E_{VB} - E_g$. Thus, the VB and CB positions of NS-CeO₂ are calculated to 2.47 and -0.51 eV, respectively. Notably, these values are very close to that currently obtained from band gap Tauc's plot and Mott-Schottky (M-S) plots (E_{VB} = 2.42 eV, E_{VB} = -0.56 eV).

Figure S6. (a) TG curves of NS-CeO₂ and pure CeO₂; and (b) FT-IR spectrum of NS-CeO₂ before and after dark adsorption equilibrium in CH₃CHO atmosphere for 1h.

TG measurement was used to confirm the partial adsorption of water on the surface of the photocatalysts convincingly. In addition, FT-IR spectrum of NS-CeO₂ contained a significant peak at 3450 cm⁻¹ and this peak was attributed to the hydroxyl vibration of adsorption of water on the photocatalysts surface. While after dark adsorption equilibrium in CH₃CHO atmosphere for 1h, the stronger characteristic absorption peak of -OH can be clearly observed in NS-CeO₂, indicating a further increase tendency of water content on its surface.

Figure S7. Bader charge diagram and calculated cross view charge density differences of (a, b) N doped-CeO₂ and (c, d) S doped-CeO₂.

Figure S8. Results for total and partial density of states (DOS) of (a) pure CeO₂, (b) NS-CeO₂, (c) N-CeO₂ and (d) S-CeO₂.s