Electronic supplementary information

A biomimetic all-inorganic photocatalyst for the artificial photosynthesis of hydrogen peroxide

Miwako Teranishi,¹ Shin-ichi Naya,¹ Yaozong Yan,² Tetsuro Soejima,²

Hisayoshi Kobayashi,³ and Hiroaki Tada²*

¹ Environmental Research Laboratory, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.

² Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.

³Emeritus Prof. Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.

* To whom correspondence should be addressed: TEL: +81-6-6721-2332, FAX: +81-6-6727-2024, E-mail: h-tada@apch.kindai.ac.jp

Table of contents

1.	Experimental Section	·S3,4
2.	Reference	·S5
3.	Supplementary Tables	·S6,7
4.	Supplementary Figures	·S8-15

Experimental Section

Materials

SnO₂ NPs (mean particle size = 22-43 nm, specific surface area = 160 m² g⁻¹) were purchased from FUJIFILM Wako Chem. Co. SnO₂ NPs (mean particle size ~100 nm) were purchased from Aldrich. Hydrogen tetrachloroaurate(III) tetrahydrate (HAuCl₄·4H₂O > 99%), sodium hydroxide (NaOH > 97.0%), antimony(III) chloride (SbCl₃ >98.0%), copper(II) sulfate pentahydrate (CuSO₄·5H₂O > 99.5%), 2,9-dimethyl-1,10-phenanthroline hemihydrate (C₁₄H₁₂N₂·0.5H₂O), phosphate buffer solution (pH 6.86), sodium perchlorate (NaClO₄ >96.0%) were purchased from Kanto Chemical Co. Fluorine-doped tin(IV) oxide film-coated glass (FTO, TEC7) was purchased from Aldrich. All chemicals were used as-received without further purification.

Photocatalyst preparation.

Au NPs were loaded on commercially available SnO₂ NPs (FUJIFILM Wako Chem. Co., mean particle size = 22-43 nm, specific surface area = $160 \text{ m}^2 \text{ g}^{-1}$) by the deposition-precipitation method.¹ An aqueous solution of HAuCl₄ (4.86 mM, 50 mL) was neutralized to pH 6 by 1 M NaOH aq. SnO₂ NPs (5 g) were dispersed into the solution, and the suspension was stirred at 343 K for 1 h. The particles were collected by the centrifugation, and washed with distilled water. After drying, the resulting particles were calcined at 773 K for 4 h in the air to obtain Au/SnO₂. SnO₂ or Au/SnO₂ (1 g) were dispersed into a methanol solution of SbCl₃ (0.2-50 mM, 50 mL), and placed in the dark at 293 K for 0.25 h. The resulting sample was washed with methanol, distilled water, and acetone, and dried in vacuo to obtain SnO₂-Sb(III) or Au/SnO₂-Sb(III). For comparison, Au NPs were loaded on SnO₂ NPs consisting of isolated particles (Aldrich, mean particle size ~100 nm) by the depositionprecipitation method using urea as a neutralizer.² SnO₂ NPs (0.8 g) and urea (1.17 g) were added into an aqueous solution of HAuCl₄ (4.86 mM, 40 mL), and stirred at 353 K for 12 h. The particles were collected by the centrifugation, and washed with distilled water. After drying, the resulting particles were calcined at 673 K for 1 h in the air to obtain Au/SnO₂. Au/SnO₂ (0.2 g) were dispersed into a methanol solution of SbCl₃ (50 mM, 10 mL), and placed in the dark at 293 K for 0.25 h. The resulting sample was washed with methanol, distilled water, and acetone, and dried in vacuo to obtain Au/SnO₂-Sb(III).

The Cl in the solution after the adsorption of SbCl₃ on SnO₂ NCs can exist as SbCl₃ and free Cl⁻ ions. The mole numbers of Sb $(n_{s,Sb})$ and Cl $(n_{s,Cl})$ in the solutions were determined by ICP spectroscopy and ion chromatography, respectively. The subtraction of $n_{s,Cl}$ - $3n_{s,Sb}$ yields the mole number of free Cl⁻ ions in the solution $(n_{s,Cl})$. Further, the number of Cl⁻ ligands liberated by the adsorption (x in SbCl_{3-x}) was calculated to be 1.6-2.0 by the ratio of $n_{s,Cl}$ to the mole number of the Sb adsorbed on SnO₂ $(n_{ad,Sb})$.

Characterization

Sb loading amounts were quantized by using inductively coupled plasma spectroscopy (ICPE-9820, Shimadzu). Observations of a transmission electron microscopy (TEM) and high- resolution TEM were carried out by means of JEM-2100F (JEOL) operated with an applied voltage of 200 kV. The measurements of X-ray photoelectron spectroscopy (XPS) was carried out by using a Kratos Axis Nova X-ray photoelectron spectrometer with a monochromated Al K α X-ray source operated at 15 kV and 10 mA using C1s as the energy reference (284.6 eV). Diffuse reflectance UV-Vis-NIR

absorption spectra were collected by a UV-2600 spectrometer (Shimadzu) with integrating sphere unit (Shimadzu, ISR-2600Plus) at room temperature. The reflectance (R_{∞}) of the samples was recorded by using BaSO₄ as the reference. To obtain the relative absorption coefficient, the Kubelka-Munk function $[F(R_{\infty}) = (1 - R_{\infty})^2/2R_{\infty}]$ was used. The photoluminescence (PL) spectra were collected by means of a JASCO FP-6000 spectrofluorometer with an excitation wavelength of 300 nm at 77 K.

Adsorption isotherms of SbCl₃ on SnO₂

 $SnO_2 NPs$ (50 mg) were dispersed into a methanol solution of $SbCl_3$ (0.2-50 mM, 50 mL), and placed in the dark at 293 K for 3 h. After the centrifugation, the supernatant was filtered by using PTFE membrane filter. The Sb amount of the solution was quantified by using inductively coupled plasma spectroscopy (ICPE-9820, Shimadzu).

Photocatalytic H₂O₂ production

Photocatalyst (10 mg) was dispersed into aerobic distilled water (10 mL) in an open-test tube, and stirred at 25 °C under illumination by LED lamp ($\lambda_{ex} = 420 \pm 20$ nm, I = 8.1 mW cm⁻²). After removing the particles, the concentration of H₂O₂ was quantified by the colorimetric method using Cu(II) ion and 2,9-dimethyl-1,10-phenanthroline.³ The external quantum efficiency (ϕ_{ex}) was calculated with assuming two-electron process as Eq. 1.

 ϕ_{ex} (%) = {2 × (number of H₂O₂ molecules produced)/number of incident photons}× 100 (1)

Photoelectrochemical measurements

SnO₂ nanocrystalline film was formed on fluorine-doped tin oxide (FTO, Aldrich, TEC7). SnO₂ NPs were added to a solution of polyethylene glycol 20,000 (0.2 g), Triton X-100 (0.1 mL), and acetylacetone (1 drop) in distilled water (0.4 mL), and grinded to form the uniform paste. By the doctor blade technique, the paste was coated on FTO with 60 μ m thick, and the resulting sample was calcined at 773 K for 1 h to form mp-SnO₂/FTO. The SnO₂/FTO was immersed into a methanol solution of SbCl₃ (0.2-50 mM, 10 mL), and placed in the dark at 293 K for 3 h. The resulting electrode was washed with methanol, distilled water, and acetone, and dried in vacuo to obtain SnO₂-Sb(III)/FTO. Photoelectrochemical measurements were performed by the standard three-electrochemical cell with the structure of SnO₂-Sb(III)/FTO (working electrode) | 0.1 M NaClO₄ aqueous solution | Ag/AgCl (reference electrode) | glassy carbon (counter electrode). The working electrode was illuminated by monochromatic light using LED lamp.

DFT simulations

DFT calculations with the periodic boundary conditions were carried out using a plane wave based program, CASTEP.^{4,5} For the geometry optimization, the Perdew-Burke-Ernzerhof (PBE) functional^{6,7} was used together with the ultrasoft-core potentials.⁸ The basis set cutoff energy was set to 300 eV. For the present systems, the PBE functional afforded too narrow band gaps, and then the 1-point energy calculation was performed using the hybrid B3LYP functional,⁹ the norm conserving core potentials¹⁰ and the cutoff energy of 600 eV with the PBE optimized structures. The electron configurations of the atoms were O: $2s^22p^4$, Cl: $3s^23p^5$, Sn: $5s^25p^2$, and Sb: $5s^25p^3$. The slab mode was prepared by cleaving (110) face of bulk SnO₂. Lattice parameters of the primitive cell were a = 3.186 Å, b = 6.700 Å, $\alpha = \beta = \gamma = 90^{\circ}$. The *c*-axis was taken in the direction of surface normal, and set to *c* = 19.286 Å including the vacuum region. For calculation with adsorbates, the super cell with twice

the primitive cell was adopted (a = 6.373 Å). For the atomic composition of slab models, $(SnO_2)_{12}$ was adopted. Considering the hydrolysis reaction $(SnO_2)_{12} + H_2O \rightarrow HO-(SnO_2)_{12}$ -H, and a successive reaction with SbCl₃, HO-(SnO₂)₁₂-H + SbCl₃ \rightarrow [O-(SnO₂)₁₂]-SbCl + 2HCl, the composition of slab model was set to [Sn₁₂O₂₅]-SbCl. For a model of heavier concentration of SbCl, [Sn₁₂O₂₅]-(SbCl)₂ model was also employed, where SbCl unit was bonded to the central and peripheral O atoms.

References

- 1. S. Tsubota, M. Haruta, T. Kobayashi, A. Ueda and Y. Nakahara, *Preparation of catalysts V*, Elsevier, Amsterdam, 1991.
- 2. R. Zanella, S. Giorgio, C. R. Henry and C. Louis, J. Phys. Chem. B, 2002, 106, 7634-7642.
- K. Kosaka, H. Yamada, S. Matsui, S. Echigo and K. Shishida, *Environ. Sci. Technol.*, 1998, 32, 3821-3824.
- 4. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Johnnopoulos, *Rev. Mod. Phys.*, 1992, *64*, 1045-1097.
- V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, R. H. Nobes, *Int. J. Quantum Chem.*, 2000, 77, 895-910.
- 6. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
- P. Perdew, K. Burke, M. Ernzerhof, [Erratum to Document Cited in CA126:51093]. *Phys. Rev. Lett.*, 1997, **78**, 1396.
- 8. K. Laasonen, R. Car, C. Lee, D. Vanderbilt, Phys. Rev. B, 1991, 43, 6796-6799.
- 9. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- 10. D. R. Hamann, M. Schluter and C. Chiang, Phys. Rev. Lett., 1979, 43, 1494-1497.

Catalyst	Ga	Light wavelength (Intensity)	H ₂ O ₂ generation	External quantum	Ref.
	s		rate (mM g ⁻¹ h ⁻¹)	yield (Φ_{ex})	
Au/SnO ₂ -Sb(III)	Air	420 nm (8.1 mW cm ⁻²)	6.1	1.1%	This work
Au/SnO ₂ -Sb(III)	Air	Solar simulator (AM 1.5)	20.1		This work
Au/TiO ₂	Air	> 400 nm (AM 1.5 100 mWcm ⁻²)	6.5×10 ⁻²		11
Au/WO ₃	O ₂	420-500 nm (2.69 mW cm ⁻²)	2.8×10 ⁻²		12
Au/BiVO ₄	O ₂	420-500 nm (2.69 mW cm ⁻²)	8.0×10 ⁻²	0.25%	12
Graphene Oxide	Air	> 400 nm (Xe, 765 W)	0.63		13
N:Cu ₂ O@CuO	Air	> 420 nm (Xe, 300 W)	0.84		14
Pt-PtO _x /WO ₃	Air	> 420 nm (550 mW cm ⁻²)	2.0		15
Au/WO ₃	Air	> 420 nm (4 mW cm ⁻²)	1.6		16
$Pd/Mo:BiVO_4/CoO_x\ O_2$		Solar simulator (AM 1.5)	59.4	5.8%	17

Table S1. Comparison of the activity of the metal oxide-based visible light photocatalysts for H_2O_2 production.

- 11. N. Kaynan, B. A. Berke, O. Hazut and R. Yerushalmi, J. Mater. Chem. A., 2014, 2, 13822-13826.
- H. Hirakawa, S. Shiota, Y. Shiraishi, H. Sakamoto, S. Ichikawa and T. Hirai, ACS Catal., 2016, 6, 4976-4982.
- 13. W.-C. Hou and Y.-S. Wang, ACS Sustain. Chem. Eng., 2017, 5, 2994-3001.
- 14. W. Zhang, X. Chen, X. Zhao, M. Yin, L. Feng and H. Wang, *Appl. Surf. Sci.*, 2020, **527**, 146908/1-9.
- 15. W. Xie, Z. Huang, R. Wang, C. Wen and Y. Zhou, J. Mater. Sci., 2020, 55, 11829-11840.
- Y. Wang, Y. Wang, J. Zhao, M. Chen, X. Huang and Y. Xu, *Appl. Catal. B*, 2021, 284, 119691/1-11.
- 17. T. Liu, Z. Pan, J. M. M. Vequizo, K. Kato, B. Wu, A. Yamakata, K. Katayama, B. Chen, C. Chu, K. and Domen, *Nat. Commun.*, 2022, **13**, 1034/1-8.

Metal oxides	H ₂ O _{2ad}	H_2O_{2ad}
	(µmol g ⁻¹)	(µmol m ⁻²)
SnO ₂	0.437	0.004
$\text{SnO}_2\text{-}\text{Sb(III)} \Gamma_{ad} = 0.18$	2.08	0.021
$\text{SnO}_2\text{-}\text{Sb}(\text{III}) \Gamma_{ad} = 0.56$	3.88	0.039
Anatase TiO ₂	7.01	0.070
Rutile TiO ₂	7.70	0.077
SrTiO ₃	8.60	0.434
BiVO ₄	1.80	1.295
Bi ₂ O ₃	9.60	2.240
WO ₃	2.10	0.251
ZrO ₂	9.60	0.096

Table S2. Comparison for H_2O_2 adsorption amount on metal oxides.

Fig. S1. (a) Adsorption isotherm of SbCl₃ on SnO₂ at 293 K (blue curve), and the Langmuir plot (red straight line). SbCl₃ was adsorbed on SnO₂ NCs from the methanol solution for 3 h at 293 K to achieve adsorption equilibrium. (b) Adsorption amounts of SbCl₃ on SnO₂ NCs from the methanol solution at 293 K vs. initial concentration of SbCl₃ (C_0). SbCl₃ was adsorbed on SnO₂ NCs from the methanol solution for 15 min at 293 K.

Fig. S2. TEM-EDS mapping of SnO_2 -Sb(III) prepared at C_0 = 50 mM.

Fig. S3. Deconvoluted Sb 3d3/2-XP spectrum for SnO₂-Sb(III) with Γ_{ad} = 0.56 mmol g⁻¹.

Fig. S4. Number of Cl⁻ ligands liberated by the adsorption.

Fig. S5. DRIFT spectra of SnO₂-Sb(III) with varying $\varGamma_{\rm ad}.$

Fig. S6. Tauc plots for the absorption spectrum of ummodified SnO_2 .

Fig. S7. TEM-EDS mapping of Au@SnO₂.

Fig. S8. Homoepitaxial junction between SnO_2 NCs with an orientation of $(101)_{SnO2}//(101)_{SnO2}$.

Fig. S9. TEM image (a) and Au particle size distribution (b) of Au/SnO₂-Sb(III) prepared at $C_0 = 50$ mM.

Fig. S10. Comparison of the photocatalytic activity of Au@SnO₂-Sb(III) (Γ_{ad} = 0.18 mmol g⁻¹) for H₂O₂ generation from water and O₂ under visible-light irradiation (λ_{ex} = 420 nm) and simulated sunlight (AM-1.5, one sun) at 298 K.

Fig. S11. (a) Stability test of the Au/SnO₂-Sb(III) (Γ_{ad} = 0.56) photocatalyst for H₂O₂ generation. (b) Absorption spectra of Au@SnO₂-Sb(III) before and after 5 times repeated reaction.

Fig. S12. Sb3d (a) and Cl2p-XP (b) spectra of Au@SnO₂-Sb(III) before and after the repeated reactions.

Fig. S13. Action spectrum of the external quantum yield for the reaction in the $Au@SnO_2-Sb(III)$ system.

Fig. S14. Photoluminescence spectra of SnO_2 , $Au@SnO_2$, SnO_2 -Sb(III), and $Au@SnO_2$ -Sb(III) were measured with excition wavelength of 300 nm at 77 K.