Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Highly efficient electrocatalytic oxidation of 5-hydroxymethylfurfural on copper nanocrystalline/carbon hybrid catalysts: Structure-function relations

Xingyu Lu,^{‡a,b} Ke Qi,^{‡a,b} Di Wang,^{a,b,c} Xueya Dai,^{a,b} Wei Qi^{*a,b}

^a Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences

Shenyang, Liaoning, 110016, P. R. China. E-mail: wqi@imr.ac.cn

^b School of Materials Science and Engineering University of Science and Technology of China Shenyang,

Liaoning, 110016, P. R. China.

^c School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.

E-mail: wqi@imr.ac.cn

Figure S1. CV curves of Cu(NP)/CP, Cu(NDD)/CP and Cu(NSD)/CP catalysts at different scan rate from 10 mV s⁻¹ to 50 mV s⁻¹ in 0.1 M KOH solution with 5 mM HMF.

Figure S2. Conversion of HMF and selectivity of its oxidation products as function of charges passed through the electrode for Cu foil, Cu(NP)/CP and Cu(NDD)/CP catalysts at potential of 1.46 V_{RHE} .

Figure S3. SEM images of (a) Cu(NP)/CP-used, (b) Cu(NDD)/CP-used and (c) Cu(NSD)/CP-used samples.

Figure S4. XRD pattern of Cu(NP)/CP-used, Cu(NDD)/CP-used and Cu(NSD)/CP-used catalysts.

Figure S5. XPS Auger electron spectroscopy of (a) Cu(NP)/CP, (b) Cu(NDD)/CP, (c) Cu(NSD)/CP, (d) Cu(NP)/CP-used, (e) Cu(NDD)/CP-used and (f) Cu(NSD)/CP-used catalysts.

Table S1. Comparisons of catalytic performance of Cu(NSD)/CP and other reported Cubase electrocatalysts.

Catalyst	HMF	Potential	Electrolyte	Electrode	Reaction	HMF	FDCA	FDCA	
	concentration			area	time	conversion	yield	Selectivity	
Cu(NSD)/CP	5 mM	1.46 Vrhe	0.1M KOH	3cm ²	43.3 C	96.0%	96.0%	100.0%	This work
CuNi/C	5 mM	$1.45 V_{RHE}$	1 M KOH	1 cm ²	5 h	62.9%	28.3%	45.0%	ref.1
CuNiO ₂ /C	5 mM	1.45 V _{RHE}	1 М КОН	1 cm ²	5 h	81.3%	43.6%	53.6%	ref.1
Cu(OH)2/C	5 mM	1.45 V _{RHE}	1 М КОН	1 cm ²	90 C	75.8%	71.2%	93.9%	ref.1
CuNi(OH)2/C	5 mM	$1.45 V_{RHE}$	1 М КОН	1 cm ²	90 C	100.0%	93.3%	93.3%	ref.1
Cu(OH)2 NWs/CuF	10 mM	1.69 V _{RHE}	0.1 M KOH	3 cm ²	206 min	96.4%	80.3%	83.3%	ref.2
CuO NWs/CuF	10 mM	$1.64 V_{RHE}$	0.1 M KOH	3 cm^2	89 min	99.4%	90.9%	91.4%	ref.2
Nanocrystalline Cu Foam	5 mM	$1.62 V_{RHE}$	0.1 M KOH	4 cm^2	41 C	99.9%	96.0%	96.1%	ref.3

Table S2. Contents of Cu ⁰ , Cu ¹⁺ , Cu ²⁺ on the su	<pre>irface of Cu(NP)/CP, Cu(NDD)/CP ar</pre>	۱d
Cu(NSD)/CP samples before and after electrooxi	dation HMF reaction.	

Catalyst	peaks area				
	Cu ²⁺	Cu⁺	Cu ^o		
Cu(NP)/CP	0.00	30.61	69.39		
Cu(NDD)/CP	0.00	19.75	80.25		
Cu(NSD)/CP	0.00	23.52	76.48		
Cu(NP)/CP-used	53.13	16.21	30.66		
Cu(NDD)/CP-used	59.73	13.37	26.89		
Cu(NSD)/CP-used	63.46	11.90	24.63		

references

- [1] H. Chen, J. Wang, Y. Yao, Z. Zhang, Z. Yang, J. Li, K. Chen, X. Lu, P. Ouyang, J. Fu, *ChemElectroChem* 2019, 6, 5797-5801.
- [2] H. M. Pham, M. J. Kang, K.-A. Kim, C. G. Im, S. Y. Hwang, H. G. Cha, *Korean J. Chem. Eng.* 2020, **37**, 556-562.
- [3] D.-H. Nam, B. J. Taitt, K.-S. Choi, ACS Catal. 2018, 8, 1197-1206.