Supporting Information for

Theoretical study of p-block metal-nitrogen-carbon single-atom catalysts for oxygen reduction reaction

Hao Hu,^a Peng Zhang,^{*,b} Bei-Bei Xiao,^c and Jian-Li Mi^{*,a}

^a Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China. Email: <u>jlmi@ujs.edu.cn</u> (J.-L. Mi)

^b Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of

Education, Institute of Environmental Research at Greater Bay, Guangzhou University,

Guangzhou 510006, China. Email: pengzhang85@foxmail.com (P. Zhang).

^c School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.

Calculation methods

The Gibbs free energy diagrams of ORR on PM-N₄ are calculated using the reversible hydrogen electrode (RHE) model developed by Nørskov et al..¹ Taken RHE as the reference electrode, the chemical potential (μ) of proton-electron pair is equal to that of half a hydrogen molecule:

$$\mu_{\rm H^+} + \mu_{\rm e^-} = \frac{1}{2}\mu_{\rm H_2}$$

at conditions with U = 0 V and $P_{H_2} = 1$ bar.

The free energies (G) of each species are calculated as:

$$G = E_{\rm DFT} + E_{\rm ZPE} - TS$$

where the E_{DFT} is the DFT calculated total energy, E_{ZPE} is zero-point energy and S is the entropy at 298 K. Since the exact free energy of OOH, O, OH radicals in the electrolyte

solution is difficult to obtain, the adsorption free energy ΔG_{OOH*} , ΔG_{O*} and ΔG_{OH*} are relative to the free energy of stoichiometrically appropriate amounts of H₂O (*l*) and H₂ (*g*), defined as follows:

$$\begin{split} \Delta G_{\text{OOH}*} &= G_{\text{OOH}*} - G_* - (2^{G_{\text{H}_2\text{O}}} - \frac{3}{2}^{G_{\text{H}_2}}) \\ &= (E_{\text{OOH}*} - E_* - 2^{E_{\text{H}_2\text{O}}} + \frac{3}{2}^{E_{\text{H}_2}}) \\ + (E_{\text{ZPE}}(\text{OOH}*) - E_{\text{ZPE}}(*) - 2E_{\text{ZPE}}(\text{H}_2\text{O}) + \frac{3}{2}E_{\text{ZPE}}(\text{H}_2)) \\ &- T \times (S_{\text{OOH}*} - S_* - 2^{S_{\text{H}_2\text{O}}} + \frac{3}{2}^{S_{\text{H}_2}}) \\ \Delta G_{\text{O}*} &= G_{\text{O}*} - G_* - (^{G_{\text{H}_2\text{O}}} - ^{G_{\text{H}_2}}) \\ &= (E_{\text{O}*} - E_* - ^{E_{\text{H}_2\text{O}}} + ^{E_{\text{H}_2}}) \\ + (E_{\text{ZPE}}(\text{O}^*) - E_{\text{ZPE}}(*) - E_{\text{ZPE}}(\text{H}_2\text{O}) + E_{\text{ZPE}}(\text{H}_2)) \\ &- T \times (S_{\text{OOH}*} - S_* - ^{S_{\text{H}_2\text{O}}} + ^{S_{\text{H}_2}}) \\ \Delta G_{\text{OH}*} &= G_{\text{OH}*} - G_* - (^{G_{\text{H}_2\text{O}}} - \frac{1}{2}^{G_{\text{H}_2}}) \\ &= (E_{\text{OH}*} - E_* - ^{E_{\text{H}_2\text{O}}} + \frac{1}{2}^{E_{\text{H}_2}}) \\ + (E_{\text{ZPE}}(\text{O}^*) - E_{\text{ZPE}}(*) - E_{\text{ZPE}}(\text{H}_2\text{O}) + \frac{1}{2}E_{\text{ZPE}}(\text{H}_2)) \\ &- T \times (S_{\text{OOH}*} - S_* - ^{S_{\text{H}_2\text{O}}} + \frac{1}{2}^{S_{\text{H}_2}}) \\ \end{split}$$

The reaction free energy (ΔG) of the elementary steps in ORR was calculated as:

$$\Delta G = \Delta E_{\rm DFT} + \Delta E_{\rm ZPE} - T\Delta S + \Delta G_{\rm U} + \Delta G_{\rm pH}$$

where ΔE_{DFT} is the difference of total energy, ΔE_{ZPE} and ΔS are the differences in the zeropoint energy and the change of entropy, *T* is 298.15 K, $\Delta G_{\text{U}} = -eU$ and $\Delta G_{\text{pH}} = p\text{H} \times \kappa_{\text{B}}\text{Tln10}$ are the contributions from the electrode potential (*U*) and pH value (κ_{B} is the Boltzmann constant), respectively.^{2,3} Since O₂ in the triplet ground state is notoriously poorly described by DFT computations, the free energy of O₂ was derived as:

$${}^{G_{O_2}}(g) = 2^{G_{H_2O}}(l) - 2^{G_{H_2O}}(g) - 4.92 \text{ eV}$$

The reaction free energy of (1)-(4) for ORR (at U = 0 V vs. RHE) can be calculated using the following equations:

$$\Delta G_1 = \Delta G_{\rm OOH*} - 4.92 \text{ eV}$$
$$\Delta G_2 = \Delta G_{\rm O*} - \Delta G_{\rm OOH*}$$
$$\Delta G_3 = \Delta G_{\rm OH*} - \Delta G_{\rm O*}$$
$$\Delta G_4 = -\Delta G_{\rm OH*}$$

The theoretical overpotential η was adopted to determine the ORR activity of PM-N₄ moieties, which was obtained based on the reaction free energies of the four elemental steps as:

$$\eta = \max\{\Delta G_1, \Delta G_2, \Delta G_3, \Delta G_4\}/e + 1.23 \text{ V}$$

The conductor-like screening model (COSMO) was used to simulate the aqueous environment, and the dielectric constant was set to 78.54.⁴

To evaluate the bonding strength between the PM and the substrate, the binding energy E_{b} is calculated as:

$$E_{\rm b} = E_{\rm PM-N_4} - E_{\rm N_4} - E_{\rm PM}$$

where ${}^{E_{N_4}}$ and E_{PM} is the energy of N₄-doped graphene nanosheet (double carbon vacancies) and isolated one PM atom calculated by DFT, respectively. Also, to compare the bonding strength of PM in PM-N₄ moiety and in bulk metal, the cohesive energies in bulk metal (E_{coh}) are also calculated:

$$E_{\rm coh} = \mu_{\rm PM \, (bulk)} - E_{PM}$$

where $\mu_{PM (bulk)}$ is the calculated chemical potential of PM atom from the most stable bulk crystal by DFT.

Microkinetic model for polarization curve simulation

Inspired by the previous study of Nørskov et al.,⁵ a microkinetic model has been constructed to simulate the ORR polarization curves of PM-N-C using CatMAP code developed by Nørskov's group.⁶ The O₂ molecule diffusion, adsorption and electrochemical reduction steps are listed by the following equations:

$$O_2(aq) \stackrel{k_1}{\underset{k_{-1}}{\rightleftharpoons}} O_2(dl)$$

$$O_{2}(dl) + * \underset{k_{-2}}{\overset{\neq}{\underset{-2}{\rightarrow}}} O_{2} *$$

$$O_{2} * + H^{+} + e^{-} \underset{k_{-3}}{\overset{k_{3}}{\underset{-3}{\rightarrow}}} OOH *$$

$$OOH * + H^{+} + e^{-} \underset{k_{-4}}{\overset{k_{4}}{\underset{-4}{\rightarrow}}} O * + H_{2}O$$

$$O * + H^{+} + e^{-} \underset{k_{-5}}{\overset{k_{5}}{\underset{-5}{\rightarrow}}} OH *$$

$$OH * + H^{+} + e^{-} \underset{k_{-6}}{\overset{k_{6}}{\underset{-6}{\rightarrow}}} O * + H_{2}O$$

Rate equations

Based on the above reaction steps, the rate equations of each species are accordingly given below:

$$\begin{aligned} \frac{\partial x_{O_2(dl)}}{\partial t} &= k_1 x_{O_2(aq)} - k_{-1} x_{O_2(dl)} - k_2 x_{O_2(dl)} \theta * + k_{-2} \theta_{O_2} * \\ \frac{\partial \theta_{O_2} *}{\partial t} &= k_2 x_{O_2(dl)} \theta * - k_{-2} \theta_{O_2} * - k_3 \theta_{O_2} * + k_{-3} x_{H_2O} \theta_{OOH} * \\ \frac{\partial \theta_{OOH} *}{\partial t} &= k_3 \theta_{O_2} * - k_{-3} \theta_{OOH} * - k_4 \theta_{OOH} * + k_{-4} \theta_{O} * \\ \frac{\partial \theta_{O} *}{\partial t} &= k_4 \theta_{OOH} * - k_{-4} \theta_{O} * - k_5 \theta_{O} * + k_{-5} \theta_{OH} * \\ \frac{\partial \theta_{OH} *}{\partial t} &= k_5 \theta_{O} * - k_{-5} \theta_{OH} * - k_6 \theta_{OH} * + k_{-6} \theta * x_{H_2O} \end{aligned}$$

where x is mole fraction, θ is coverage of the species on one PM site, and t is time. ${}^{x_{H_2}0}$ is taken as 1, and ${}^{x_{O_2}(aq)}$ is taken as 2.34×10^{-5} , representing to ${}^{O_2(g)}$ in equilibrium with ${}^{O_2(aq)}$ at 1 atm. These coverages of the species on one PM site should be satisfied the following condition: ${}^{\theta *+ \theta_{O_2} *} + {}^{\theta_{OOH} *} + {}^{\theta_{OH} *} = 1$.

Following the transition state theory, the equilibrium constant $(^{K_i})$ and the rate constant $(^{k_i})$ of the non-electrochemical step *i* are given by:

$$K_{i} = exp\left(-\frac{\Delta G_{i}}{k_{B}T}\right)$$
$$k_{i} = v_{i}exp\left(-\frac{E_{a,i}}{k_{B}T}\right)$$

where ΔG_i , ν_i , and $E_{a,i}$ are the free energy change, pre-exponential factor, and activation energy of step *i*, respectively. Moreover, k_B is Boltzmann constant, and T is temperature (298.15 K). The values of ν_i are taken from ref 5.

For the electrochemical step, K_i and k_i are associated with the reaction potential (U vs. RHE) and given by:

$$K_{i} = exp\left(-\frac{e(U-U_{i})}{k_{B}T}\right)$$
$$k_{i} = A_{i}exp\left(-\frac{E_{a,i}}{k_{B}T}\right)exp\left(-\frac{e\beta(U-U_{i})}{k_{B}T}\right)$$

where U_i is the reversible potential of step *i* deduced by $U_i = -\Delta G_i/e$, A_i is the effective preexponential factor taken as 1.23×10^9 , and β is the symmetric factor taken as 0.5. Since the $E_{a,i}$ values of electrochemical ORR steps are generally small, ranging from 0.10 to 0.26 eV,^{7,8} $E_{a,i} = 0.26$ eV is adopted for all the electrochemical steps of the ORR on PM-N-C sites.

Moreover, the rate constants for all the reverse reactions $\binom{k-i}{2}$, can be deduced by:

$$k_{-i} = \frac{k_i}{K_i}$$

Current density

The current density (j) can be deduced by:

 $j = e\rho TOF_{e^{-}}$

where *e* is the elementary charge and ρ is the surface density of active sites of PM-N-C SACs, which is assumed to be comparable with that of Pt(111), and ${^{TOF}_{e}}^{-}$ is the turn over frequency of electrons.

Figures

Fig. S1. Optimized 9 geometric configurations of $PM-N_4$ embedded graphene, containing top view and side view.

Fig. S2. Phonon dispersion spectra of (a) Tl-N₄ and (b) Pb-N₄.

Fig. S3. Evolution of the total energy per atom and the temperature within 10000 fs AIMD simulation at 300 K for Pb-N₄. The inset diagrams show the atomic structure at start and end of the AIMD simulation.

Fig. S4. Optimized adsorption structures of OOH*, O* and OOH* on Al-N₄, Ga-N₄, In-N₄ and Tl-N₄ sites (Grey, blue, red and white spheres represent C, N, O and H atoms, respectively).

Fig. S5. Optimized adsorption structures of OOH*, O* and OOH* on Ge-N₄, Pb-N₄, Sb-N₄ and Bi-N₄ sites (Grey, blue, red and white spheres represent C, N, O and H atoms, respectively).

Fig. S6. Reaction free energy profiles of the ORR on PM (Al, Ga, In, Ge, Sb and Bi)- N_4 sites at different potentials.

Fig. S7. Optimized adsorption structures of OOH*, O* and OOH* on Al-N₄-OH* and Ga-N₄-OH* (Grey, blue, red and white spheres represent C, N, O and H atoms, respectively).

Fig. S8. Optimized adsorption structures of OOH*, O* and OOH* on Ge-N₄-OH*, Sb-N₄-OH* and Bi-N₄-OH* (Grey, blue, red and white spheres represent C, N, O and H atoms, respectively).

Fig. S9. Optimized adsorption structures of OOH*, O* and OOH* on Ge-N₃C, Sn-N₃C and In-N₃C (Grey, blue, red and white spheres represent C, N, O and H atoms, respectively).

Fig. S10. Optimized adsorption structures of OOH*, O* and OOH* on Ge-N₃C-OH* and Sn-N₃C-OH* (Grey, blue, red and white spheres represent C, N, O and H atoms, respectively).

Fig. S11. Reaction free energy profiles of the ORR on the three (a) PM-N₃-C and (b) PM-N₃-C-OH* sites at U = 0 V vs. RHE.

Fig. S12. The linear relationship between ΔG_{OOH*} and ΔG_{OH*} on typical pristine and OH* self-modified PM-N₃-C sites (black dots represent pristine and OH* self-modified PM-N₄ sites). The linear relationship between ΔG_{OOH*} and ΔG_{OH*} for typical PM-N₃-C and PM-N₃-C -OH* sites is consistent with that for PM-N₄ and PM-N₄-OH* sites.

Fig. S13. (a) The linear relationship between ΔG_{O^*} and ΔG_{OH^*} for pristine and OH* selfmodified PM-N₄ sites. (b) The linear relationship between ΔG_{O^*} and ΔG_{OH^*} for typical pristine and OH* self-modified PM-N₃-C sites (black dots represent pristine and OH* selfmodified PM-N₄ sites). The ΔG_{O^*} values are almost linearly related to the ΔG_{OH^*} values, but the linearity (R^2 =0.74) is much lower than that of ΔG_{OOH^*} (R^2 =0.99).

Fig. S14. (a) Mulliken charge (C_M) and (b) Hershfield charge (C_H) of PM atom in PM-N₄ and PM-N₄-OH* sites.

Fig. S15. Density of states (DOS) for OH* adsorbed on Al- N_4 and Ge- N_4 . The s-state and p-state of PM atom are depicted by cyan and yellow, respectively.

Fig. S16. (a) DOS of vacuum OH and adsorbed OH* on In-N₄ and PDOS of In atom of In-N₄. (b) DOS of vacuum OH vacuum and OH* adsorbed on In-N₄-OH* and PDOS of In atom of In-N₄-OH*. (c) DOS of vacuum OH and adsorbed OH* on Ge-N₄ and PDOS of Ge atom of Ge-N₄. (d) DOS of vacuum OH vacuum and OH* adsorbed on Ge-N₄-OH* and PDOS of Ge atom of Ge-N₄-OH*.

Tables

Table S1. The binding energies (E_b) between Sn and its adjacent N atoms in Sn-N₄ moiety with different orbital cut-off radius (R).

Cut-off energy (Å)	4.6	4.8	5.0	5.2	5.4
Energy (eV)	-4.624	-4.554	-4.527	-4.562	-4.546

Table S2. Convergence test for k-point mesh for the binding energies (E_b) between Sn and its adjacent N atoms in Sn-N₄ moiety.

K-point	2×2×1	3×3×1	4×4×1	5×5×1	6×6×1	7×7×1
Energy (eV)	-4.621	-4.569	-4.562	-4.561	-4.560	-4.559

Table S3. Lattice constants (a×b) of PM-N₄ embedded graphene sheets (c = 20 Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$). All results are in unit of Å².

Al	Ga	In
9.82 × 9.82	9.85×9.85	9.82 × 9.82
T1	Ge	Sn
9.84 × 9.84	9.81 × 9.81	9.84 × 9.84
Pb	Sb	Bi
9.84 × 9.84	9.82 × 9.82	9.84 × 9.84

PM moiety	PM-N (Å)	h _{PM} (Å)	Atomic radii	$E_{b}(eV)$	$E_{coh}(eV)$
Al-N ₄	1.89	0	1.21	-7.36	-3.46
Ga-N ₄	1.93	0	1.22	-4.45	-2.73
In-N ₄	2.43	1.64	1.42	-3.49	-2.38
Tl-N ₄	2.73	2.04	1.45	-2.94	-1.84
Ge-N ₄	2.15	1.11	1.20	-5.07	-3.63
Sn-N ₄	2.31	1.42	1.39	-4.56	-3.03
Pb-N ₄	2.45	1.67	1.46	-3.70	-2.60
Sb-N ₄	2.21	1.23	1.39	-2.95	-2.81
Bi-N ₄	2.36	1.48	1.48	-1.95	-2.47

Table S4. The bond length of PM-N, the height of PM atom above the substrate (h_{PM}), the atomic radii of PM, the binding energy (E_b) between PM and its adjacent N atoms in PM-N₄ moieties, and the cohesive energy (E_{coh}) of PM atom in bulk p-block metal.

Table S5. Values of $\Delta G_{OOH^*},$ ΔG_{O^*} and ΔG_{OH^*} on PM-N_4 embedded graphene.

PM moiety	$\Delta G_{OOH^*} (eV)$	$\Delta G_{O^*}(eV)$	$\Delta G_{OH^*} (eV)$
Al-N ₄	1.76	0.60	-1.60
Ga-N ₄	2.22	0.90	-1.05
In-N ₄	3.16	1.66	-0.10
T1-N ₄	4.56	3.89	1.45
Ge-N ₄	3.66	1.01	0.32
Sn-N ₄	3.88	1.85	0.78
Pb-N ₄	3.71	2.88	0.68
Sb-N ₄	3.12	1.12	0.00
Bi-N ₄	3.10	1.31	-0.06

PM moiety	$\Delta G_1 (eV)$	$\Delta G_2 \left(eV \right)$	$\Delta G_3 (eV)$	$\Delta G_4 \left(eV \right)$	η (V)
Al-N ₄	-3.16	-1.16	-2.20	1.60	2.83
Ga-N ₄	-2.70	-1.32	-1.95	1.05	2.28
In-N ₄	-1.76	-1.50	-1.76	0.10	1.33
Tl-N ₄	-0.36	-0.67	-2.44	-1.45	0.87
Ge-N ₄	-1.26	-2.65	-0.69	-0.32	0.91
Sn-N ₄	-1.04	-2.11	-1.07	-0.78	0.45
Pb-N ₄	-1.21	-0.83	-2.20	-0.68	0.55
Sb-N ₄	-1.80	-2.00	-1.12	0.00	1.23
Bi-N ₄	-1.82	-1.78	-1.37	0.06	1.29

Table S6. Reaction free energy of every CPET step and the value of overpotential η for ORR on PM-N_4 sites.

Table S7. Values of ΔG_{OOH*} , ΔG_{O*} and ΔG_{OH*} on PM-N₄-OH* sites.

PM moiety	ΔG_{OOH^*} (eV)	$\Delta G_{O^*}(eV)$	$\Delta G_{OH^*} (eV)$
Al-N ₄ -OH*	4.67	3.19	1.44
Ga-N ₄ -OH*	4.48	3.28	1.38
In-N ₄ -OH*	3.91	2.68	0.56
Ge-N ₄ -OH*	3.75	2.08	0.48
Sb-N ₄ -OH*	3.49	1.96	0.31
Bi-N ₄ -OH*	3.60	2.13	0.28

PM moiety	$\Delta G_1 (eV)$	$\Delta G_2 (eV)$	$\Delta G_3 (eV)$	$\Delta G_4 \left(eV \right)$	η (V)
Al-N ₄ -OH*	-0.25	-1.48	-1.75	-1.44	0.98
Ga-N ₄ -OH*	-0.44	-1.20	-1.90	-1.38	0.79
In-N ₄ -OH*	-1.01	-1.23	-2.12	-0.56	0.67
Ge-N ₄ -OH*	-1.17	-1.67	-1.60	-0.48	0.75
Sb-N ₄ -OH*	-1.43	-1.53	-1.65	-0.31	0.92
Bi-N ₄ -OH*	-1.32	-1.47	-1.85	-0.28	0.95

Table S8. Reaction free energy of every CPET step and the value of overpotential η for ORR on PM-N₄-OH* sites.

Table S9. Values of ΔG_{OOH^*} , ΔG_{O^*} and ΔG_{OH^*} on PM (In, Ge, Sn)-N₃C and corresponding PM-N₃C-OH* sites.

PM moiety	$\Delta G_{OOH^*} (eV)$	$\Delta G_{O^*}(eV)$	$\Delta G_{OH^*} (eV)$
In-N ₃ C	2.65	1.52	-0.51
Ge-N ₃ C	2.80	0.74	-0.46
Sn-N ₃ C	3.79	1.63	0.50
In-N ₃ C-OH*	4.04	2.66	0.91
Ge-N ₃ C-OH*	4.15	2.71	0.91
Sn-N ₃ C-OH*	3.29	2.15	0.15

PM moiety	$\Delta(\Delta G_{OH^*})$ (eV)	$\Delta G_{OH^*} \left(eV \right)$
Al-N ₄	3.04	-1.60
Ga-N ₄	2.43	-1.05
In-N ₄	0.66	-0.10
Ge-N ₄	0.16	0.32
Sb-N ₄	0.31	0.00
Bi-N ₄	0.34	-0.06
In-N ₃ C	1.42	-0.51
Ge-N ₃ C	1.37	-0.46
Sn-N ₃ C	-0.35	0.50

Table S10. Values of $\Delta(\Delta G_{OH^*})$ and ΔG_{OH^*} on PM-N₄ and typical PM-N₃C sites.

 $\label{eq:Table S11.} \mbox{Reaction free energy of every CPET step and the value of overpotential η for ORR on typical PM-N_3C and PM-N_3C-OH* sites.$

PM moiety	$\Delta G_1 (eV)$	$\Delta G_2 (eV)$	$\Delta G_3 (eV)$	$\Delta G_4 (eV)$	η (V)
In-N ₃ C	-2.27	-1.13	-2.03	0.51	1.74
Ge-N ₃ C	-2.12	-2.06	-1.20	0.46	1.69
Sn-N ₃ C	-1.13	-2.16	-1.13	-0.50	0.73
In-N ₃ C-OH*	-0.88	-1.38	-1.75	-0.91	0.35
Ge-N ₃ C-OH*	-0.77	-1.44	-1.80	-0.91	0.46
Sn-N ₃ C-OH*	-1.63	-1.15	-2.00	-0.15	1.04

PM moiety	$C_{M}\left(e\right)$	C _H (e)	O _h (eV)
Al-N ₄	1.04	0.52	-1.44
Ga-N ₄	1.04	0.53	-1.36
In-N ₄	0.59	0.26	-1.63
Tl-N ₄	0.72	0.45	0.61
Ge-N ₄	0.50	0.31	-2.55
Sn-N ₄	0.83	0.44	-0.37
Pb-N ₄	1.04	0.66	-0.64
Sb-N ₄	1.03	0.65	-1.10
Bi-N ₄	1.20	0.80	-0.99

Table S12. The Mulliken charge (C_M) and Hershfield charge (C_H) of PM atoms, as well as O highest occupied levels (O_h) of OH* on PM atoms in PM-N₄ sites.

Table S13. The Mulliken charge (C_M) and Hershfield charge (C_H) of PM atoms, as well as O highest occupied levels (O_h) of OH* on PM atoms in PM-N₄-OH* sites.

PM moiety	$C_{M}\left(e\right)$	$C_{\mathrm{H}}\left(\mathrm{e} ight)$	$O_{h}\left(eV ight)$
Al-N ₄ -OH*	1.16	0.39	-0.41
Ga-N ₄ -OH*	1.00	0.44	-0.5
In-N ₄ -OH*	1.30	0.59	-0.52
Ge-N ₄ -OH*	1.10	0.53	-1.43
Sb-N ₄ -OH*	1.07	0.64	-0.61
Bi-N ₄ -OH*	1.27	0.79	-0.74

References

- 1 J. K. Nørskov, A. Logadottir and L. Lindqvist, J. Phys. Chem. B, 2004, 108, 17886-17892.
- 2 L. Yu, X. Pan, X. Cao, P. Hu and X. Bao, J. Catal., 2011, 282, 183-190.

3 X. M. Zhao, X. Liu, B. Y. Huang, P. Wang and Y. Pei, *J. Mater. Chem. A*, 2019, **7**, 24583-24593.

4 B. Delley, Mol. Simulat., 2006, 32, 117-123.

5 H. A. Hansen, V. Viswanathan and J. K. Nørskov, J. Phys. Chem. C, 2014, **118**, 6706-6718.

6 E. Skúlason, V. Tripkovic, M. E. Bjo"rketun, S. Gudmundsdo'ttir, G. Karlberg, J. Rossmeisl, T. Bligaard, H. Jo'nsson and J. K. Nørskov, *J. Phys. Chem. C*, 2010, **114**, 18182-18197.

7 V. Tripković, E. Skúlason, S. Siahrostami, J. K. Nørskov and J. Rossmeisl, *Electrochim. Acta*, 2010, **55**, 7975-7981.

8 X. R. Zhu, J. X. Yan, M. Gu, T. Y. Liu, Y. F. Dai, Y. H. Gu and Y. F. Li, *J. Phys. Chem. Lett.*, 2019, **10**, 7760-7766.