Electronic Supplementary Information

Effect of calcination temperature on the Cu-ZrO₂ interfacial structure and its catalytic behavior in the hydrogenation of dimethyl oxalate

Yuxi Xu, Huijiang Huang, Lingxin Kong and Xinbin Ma*

Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

Contents

Fig. S1. XRD for the calcined catalysts CZ-750 and CZ-800.

Fig. S2. N_2 physical adsorption-desorption curves (a) and pore distribution curves calculated by BJH methods (b) for Cu/ZrO₂ catalysts.

Fig. S3. TEM images (a, b) and HRTEM (c) for the calcined CZ-600.

Fig. S4. Elemental mapping for the calcined CZ-600.

Fig. S5. TEM for reduced CZ-500 (a), CZ-550 (b), CZ-600 (c) and CZ-700 (d).

Fig. S6. HRTEM for the reduced CZ-400 (a, b) and CZ-550 (c, d).

Table S1. The particles size calculated from the XRD results.

 Table S2. Atomic ratios of calcined and reduced CZ-600 catalyst confirmed by EDX mapping.

Table S3. Catalytic performance of copper catalysts in DMO hydrogenation to EG in the reference literature.

Fig. S1. XRD for the calcined catalysts CZ-750 and CZ-800.

Catalysta	d(nm)	d(nm)	d(nm)	
Catalysis	t-ZrO ₂	m-ZrO ₂ CuC 44.1 31	CuO	
CZ-750	-	44.1	31.2	
CZ-800	-	53.8	41.2	

Table S1. The particles size calculated from the XRD results.

Fig. S2. N_2 physical adsorption-desorption curves (a) and pore distribution curves calculated by BJH methods (b) for Cu/ZrO₂ catalysts.

Fig. S3 . TEM images (a, b) and HRTEM (c) for the calcined CZ-600.

Fig. S4. Elemental mapping for the calcined CZ-600.

Catalysts	Mass%			Atom%				
	ОК	Cu K	Zr L	Cu/Zr	ОК	Cu K	Zr L	Cu/Zr
CuZr-600 ^c	31.35	2.15	66.50	0.0323	71.98	1.24	26.78	0.0463
CuZr-600 ^R	40.75	2.13	57.12	0.0373	79.43	1.04	19.53	0.0533

Table S2. Atomic ratios of calcined and reduced CZ-600 catalyst confirmed by EDX mapping.

C: calcined; R: reduced.

Fig. S5. TEM for reduced CZ-500 (a), CZ-550 (b), CZ-600 (c) and CZ-700 (d).

Fig. S6. HRTEM for the reduced CZ-400 (a, b) and CZ-550 (c, d).

Catalysts	Copper loading	C(DMO)	S(EG)	T∕⁰C	P/MPa	H ₂ /DMO	WHSV
32CLZ7001	32 wt.%	~97%	~98%	220	2.4	80	1.2
50CZ ²	50 wt.%	99%	96%	220	2.4	80	1.0
CuZnZr-0.2 ³	50 wt.%	100%	92%	220	3	150	0.3
CZA-600 ⁴	24 wt.%	100%	95%	220	2.5	160	0.3
`Cu/SBA-15⁵	50 wt.%	100%	99%	200	2.5	100	0.6
CuSiZr1-850 ⁶	37 wt.%	100%	96%	190	3	150	0.3

Table S3 Catalytic performance of copper catalysts in DMO hydrogenation to EG in the reference literature.

References

- 1 J. Ding, H. Liu, M. Wang, H. Tian, J. Wu, G. Yu, Y. Wang, ACS Omega, 2020, 5, 28212-28223.
- 2 J. Ding, H. Liu, H. Fan, S. Chen, Y. Wang, W. He, G. Yu, L. Ma, J. Chen, *Catal. Commun.*, 2019, **121**, 62-67.
- 3 Y. Zhu, X. Kong, H. Zheng, Y. Zhu, *Mol. Catal.*, 2018, **458**, 73-82.
- 4 S. Zhang, Q. Liu, G. Fan, F. Li, *Catal. Lett.*, 2012, **142**, 1121-1127.
- 5 X. Guo, A. Yin, W.-L. Dai, K. Fan, *Catal. Lett.*, 2009, **132**, 22-27.
- 6 Y. Zhu, X. Kong, D.-B. Cao, J. Cui, Y. Zhu, Y.-W. Li, ACS Catal., 2014, 4, 3675-3681.