Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Bulk and Interfacial Engineering of Ta₃N₅ Nanotube Arrays by Sn(IV) Doping, Proper Passivation and Co-Catalyst for Efficient Solar Water Oxidation

Pran Krisna Das,^a Maheswari Arunachalam,^b Ramesh Poonchi Sivasankaran,^b Kwang-Soon Ahn,^c

Jun-Seok Ha^d and Soon Hyung Kang^{b,*}

^aDepartment of Advanced Chemicals and Engineering, Chonnam National University, Gwangju 61186, South of Korea ^bDepartment of Chemistry Education and Optoelectronic Convergence Research Center, Chonnam National University, Gwangju 61186, South of Korea ^cDepartment of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, South Korea ^dDepartment of Chemical Engineering, Chonnam National University, Gwangju 61186, South of Korea

* E-mail: <u>skang@jnu.ac.kr</u> ; Tel: +82-62-530-2497

Figure S1. Bright-field (HAADF-TEM) image representing the interfaces in the $Co(OH)_X/GaN/Sn$ doped Ta_3N_5 NTs film.

Figure S2. Core-level XPS spectra of (a) Ta4*f*, (b) N1*s*, (c) Sn3*d*, (d) Ga2*p*, and (e) Co2*p* of Co(OH)_X/GaN/Sn doped Ta₃N₅ NTs film after the PEC test.

Figure S3. Chopped LSV curves of 1st and 2nd anodization and ICP etched of bare Ta₃N₅ NTs films.

Figure S4. Chopped LSV curves of GaN/Sn doped Ta_3N_5 NTs films at different electrodeposition times from 1min to 5min by chronoamperometric method.

Figure S5. (a) Faradaic efficiency and (b) quantities of the detected O_2 gas in a PEC system from the Co(OH)_x/GaN/Sn doped Ta₃N₅ NTs photoanode as the working electrode under applied voltages of 1.23 V_{RHE} in 0.5 M NaOH solution at pH 12.5.

Material	Fabrication Method	Surface Modification	IPCE & J (mA/cm ²) at 1.23 V _{RHE}	Ref.
Ba doped Ta ₃ N ₅	Mask anodization and nitridation of Ta foil	Co-Pi	6.7 mA cm ⁻² (0.5 M KPi)	41
Mg-Zr codoped Ta ₃ N ₅	Particle transfer	$FeO_x + CoO_x$	2.3 mA cm ⁻² (0.1 M Na ₂ SO ₄)	79
Ta ₃ N ₅	Hydrothermal and nitridation of Ta foil	Co(OH) ₂ /Co ₃ O ₄	3.64 mA cm ⁻² (1 M NaOH)	80
Ta ₃ N ₅	Hydrothermal and nitridation of Ta foil	Co(OH) _x	2.8 mA/cm ² (1 M NaOH)	81
Ta ₃ N ₅	Sputtering and nitridation of TaO_{δ} on Ta substrate	GaN/Co-Pi	8 mA cm ⁻² at 1.2 V_{RHE} (0.5 M KPi)	52
Ta ₃ N ₅	Electrophoretic deposition	Co ₃ O ₄ /Co(OH) _x	3.18 mA/cm ² at 1.2 V _{RHE} (1 M NaOH)	82
Ta ₃ N ₅	Anodization and nitridation of Ta foil	MgO/Co(OH) _x	5.5 mA cm ⁻² (1 M NaOH)	83
Ta ₃ N ₅	Anodization, hydrothermal and nitridation of Ta foil	Ni(OH) _x /Fh/TiO _x	12.1 mA cm ⁻² (1 M NaOH)	49
Ta ₃ N ₅	Sputtering (magnetron GLAD system)	FeNiO _x	9.95 mA cm ⁻² at 1.05 V _{RHE} (0.5 M K ₂ HPO ₄)	53
In:GaN/Ta ₃ N ₅ / Mg:GaN	Electron beam evaporation, atomic layer deposition and nitridation	NiCoFe-B _i	9.3 mA cm ⁻² (1 M KOH)	54
Mg doped Ta ₃ N ₅	Electron beam evaporation and nitridation	NiCoFe-B _i	8.5 mA cm ⁻² (1 M KOH)	84
Sn doped Ta ₃ N ₅	Anodization and nitridation of Ta foil, electrodeposition	GaN/Co(OH) _x	39%, 4.58 mA cm ⁻² (0.5 M NaOH)	This work

Table S1. The previous reported Ta_3N_5 -based photoanodes are compared in below Table.