Supporting information

Synergetic effect metal-support for enhanced performance of Cu-ZnO-ZrO₂/UGSO catalyst for CO₂ hydrogenation to methanol

Thi Thanh Nguyet Vu¹, Alex Desgagnés¹, Pascal Fongarland², Laurent Vanoye², Frédéric Bornette², Maria C. Iliuta^{1*}

¹Université Laval, Département de génie chimique, 1065 avenue de la Médecine, Québec, QC, G1V 0A6, Canada.

²*CP2M*, *Catalyse*, *Polymérisation*, *Procédés et Matériaux*, *CNRS*, *CPE Lyon*, *Université Claude-Bernard Lyon 1, 43 Boulevard du 11 novembre 1918*, 69616 *Villeurbanne*, *France*.

Corresponding author (maria-cornelia.iliuta@gch.ulaval.ca)

 Table S1. Reducibility of CZxZr/UGSO catalysts.

Table S2. Comparison of catalytic performance of our developed catalysts and some other catalysts in CO_2 hydrogenation into methanol.

Figure S1. N_2 adsorption-desorption isotherms (A) and pore size distributions (B) of UGSO and CZxZr/UGSO samples.

Figure S2. H₂-TPR profiles of UGSO and CZxZr/UGSO from 50 to 900 °C.

Figure S3. CO₂-TPD profiles of (A) CZ3Zr/UGSO, (B) CZ6Zr/UGSO, (C) CZ9Zr/UGSO, and (D) CZ12Zr/UGSO.

Figure S4. XRD patterns of (A) calcined UGSO, UGSO-H, CZ9Zr/UGSO and CZ9Zr/UGSO-H; (B) reduced CZ9Zr/UGSO and CZ9Zr/UGSO-H.

Figure S5. XPS spectra of surface elements in calcined samples (A) Mg 2p, (b) Fe 2p, (C) Cu 2p.

Sample	Peak α		Peak β		Peak y	
	T (°C)	% Area	T (°C)	% Area	T (°C)	% Area
CZ3Zr/UGSO	191	15.8	210	34.4	236	49 .8 ¹
CZ6Zr/UGSO	186	22.8	204	63.0	222	14.1
CZ9Zr/UGSO	178	6.3	202	74.9	206	18.7
CZ12Zr/UGSO	187	22.0	200	64.2	205	13.8

 Table S1. Reducibility of CZxZr/UGSO catalysts.

 $^1 \text{calculated}$ based on the total area of γ and λ peaks.

Table S2. Comparison of catalytic performance of our developed catalysts and some other catalysts in CO₂ hydrogenation into methanol.

Catalyst	T (°C)	P (bar)	Conv. (%)	Sel. _{MeOH} (%)	Yield _{MeOH} (%)	Ref & Year
CZ9Zr/UGSO	240	20	4.8	31.5	1.51	This
CZ9Zr/UGSO-H	240	20	7.0	26.1	1.82	work This work
Cu-ZnO-ZrO ₂ @Al-TUD-1	240	20	2.5	39.3	0.98	77
Cu-ZnO-ZrO ₂ @Al-TUD-1	260	20	5.9	27.5	1.62	77
YBa ₂ Cu ₃ O ₇	240	30	3.0	38.4	1.2	78
Cu/ZnAl ₂ O ₄	250	20	4.0	21.0	0.80	79
Cu-In-Zr-O	250	25	1.5	80.0	1.20	80
Cu-ZrO ₂	270	20	2.7	41.0	1.10	81
$Pd-Ga_2O_3/SiO_2$	250	30	1.3	58.9	0.79	82
Pd-Ca/MCM41	250	41	5.0	28.0	1.40	83
Pd-K/SBA-15	250	41	14.0	11.0	1.54	83

Figure S1. N₂ adsorption-desorption isotherms (A) and pore size distributions (B) of UGSO and CZxZr/UGSO samples.

Figure S2. H₂-TPR profiles of UGSO and CZxZr/UGSO from 50 to 900 °C.

Figure S3. CO₂-TPD profiles of (A) CZ3Zr/UGSO, (B) CZ6Zr/UGSO, (C) CZ9Zr/UGSO, and (D) CZ12Zr/UGSO.

Figure S4. XRD patterns of (A) calcined UGSO, UGSO-H, CZ9Zr/UGSO and CZ9Zr/UGSO-H; (B) reduced CZ9Zr/UGSO and CZ9Zr/UGSO-H.

Figure S5. XPS spectra of surface elements in calcined samples (A) Mg 2p, (b) Fe 2p, (C) Cu 2p.