Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Evidence of water dissociation and hydrogenation on molybdenum carbide nanocatalyst for hydroprocessing reactions

Milad Ahmadi Khoshooei^{*}, Gerardo Vitale, Lante Carbognani, Pedro Pereira-Almao

Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada

*E-mail: milad.ahmadikhoshooe@ucalgary.ca

Olefin content (wt%)*	1.2 ± 0.1
H/C ratio**	1.17 ± 0.01
Viscosity at 373 K (cP)**	$103,280 \pm 971$
Specific gravity at 288.6 K**	1.111 ± 0.002
Hydrocarbon distribution by normal boiling point (NBP) range:**	
489 K < NBP < 616 K, wt%	3%
616 K < NBP < 818 K, wt%	17%
NBP > 818 K, wt%	80%

 Table S1 Hydrocarbon feedstock properties

* Based on ¹H-NMR analysis explained elsewhere ¹

** Measurement methodologies explained elsewhere ²

2θ (°)	Plane	d _{spacing} (nm)	Crystallite size (nm)
37.4	111	0.241	1.53
43.6	200	0.207	1.56
63.1	220	0.147	1.70
76.9	311	0.124	1.50

Table S2 Analysis for H₂-treated α -MoC_{1-x} XRD peaks

Table S3 Calculation of water consumption based on CO_2 yield for the cases of CAT-100S and CAT-50H/50S

	CO ₂ yield (mg.h ⁻¹)*	Water consumption (mg.h ⁻¹)**	Water consumption (cc.min ⁻¹)	Feed water (cc.min ⁻¹)
CAT-100S (Water only)	10.92	2.48×10-4	1.5×10-4	4.0×10-3
CAT-50H/50S $H_2:H_2O = 1:1$	5.32	1.17×10-4	7.0×10 ⁻⁵	2.0×10-3

* The yield of CO_2 for thermal counterpart experiments under water vapor-only (Therm-100S) and Therm-50H/50S ($H_2O:H_2 = 1:1$, molar ratio) was subtracted, 0.5715 and 0.1448 mg.h⁻¹, respectively, to only account for production of CO_2 solely due to the water activation reaction network

** A stoichiometric molar ratio of CO₂:H₂O of 1:2 was assumed

Table S4 Hydrogen consumption estimation based on inlet and outlet hydrogen flowrates*

	H_2 flowrate in (µg.h ⁻¹)	H_2 flowrate out (µg.h ⁻¹)	H_2 consumption (%)
CAT-100H (Hydrogen only)	22.88	3.51	84.7

CAT-100S	0	0.55	N/A
(Water only)	0	0.55	1N/A
CAT-50H/50S	11 44	2.22	20 5
$H_2:H_2O = 1:1$	11.44	2.23	80.5

* Hydrogen flowrate was calculated based on the compositions, determined by GC, and the flowrates of inlet/outlet gas streams.

Fig S1 Control adsorption experiment of D_2 on in-situ activated molybdenum carbide catalyst: Mass change vs. time on stream using TG at 623 K and 0.1 MPag, and $D_2:N_2 = 1:3$ (20 sccm gas, 25 mg catalyst, no heavy hydrocarbons).

Fig S2 Long-term adsorption of water on in-situ activated molybdenum carbide catalyst, studied by TG at 623 K and 0.1 MPag, in the absence (Water-saturated N_2) and presence of hydrogen (H₂O:H₂ = 1:1) (20 sccm gas, 25 mg catalyst, no heavy hydrocarbons).

References:

- L. Carbognani, K. O. Sebakhy, M. Trujillo and P. Pereira-Almao, *Energy & Fuels*, 2020, **34**, 9252–9261.
- 2 M. Ahmadi Khoshooei, S. M. Elahi, L. Carbognani, C. E. Scott and P. Pereira-Almao, *Fuel*, 2021, **288**, 119664.