Supplementary Information

Acid pretreatment of support promotes Pd/SiO² activity for formaldehyde oxidation at room temperature

Xiaofeng Liu, †ab Chunying Wang, †ac Yaobin Li, *ace and Hong He *abcd

^a Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

^c Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control,

Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800, China

^d State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China

^e Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

†These authors contributed equally to this work.

*Corresponding Authors: Yaobin Li and Hong He,

Tel number: +86-574-8608-5855; +86-10-6284-9123

Email: ybli@iue.ac.cn; honghe@rcees.ac.cn

2 Texts; 9 Figures

Table of Contents

Text S1. Catalyst preparation

Text S2. Catalyst characterization.

Figure S1. HCHO conversion over $Pd/SiO₂-R$, $Pd/SiO₂-0.25M-R$, $Pd/SiO₂-0.5M-R$,

 $Pd/SiO₂-1.0M-R$ and $Pd/SiO₂-2.0M-R$ catalysts.

Figure S2. HCHO conversion over Pd/SiO₂-R, Pd/SiO₂-2h-R, Pd/SiO₂-4h-R, Pd/SiO₂-6h-R and $Pd/SiO₂$ -8h-R catalysts.

Figure S3. (a) HCHO conversion, (b) $CO₂$ yield over Pd/SiO₂(HNO₃), Pd/SiO₂, $SiO₂(HNO₃)$ and $SiO₂$ catalysts before reduction.

Figure S4. CO₂ yield over Pd/SiO₂(HNO₃)-R, Pd/SiO₂-R, SiO₂(HNO₃)-R and SiO₂-R catalysts.

Figure S5. Nitrogen adsorption-desorption isotherms of $Pd/SiO₂(HNO₃)-R$, $Pd/SiO₂-R$, $SiO₂(HNO₃)-R$ and $SiO₂-R$ catalysts.

Figure S6. H₂-TPSR control experiment profiles of $Pd/SiO_2(HNO_3)$ -R and Pd/SiO_2-R catalysts.

Figure S7. *In-situ* DRIFTS spectra over Pd/SiO₂-R catalyst.

Figure S8. *In-situ* DRIFTS spectra over SiO₂-R support.

Figure S9. O₂ effect on the activity of the (a) $Pd/SiO₂(HNO₃)-R$ and (b) $Pd/SiO₂-R$ catalysts

Text S1. Catalyst preparation

SiO² (AR grade, Shanghai Aladdin biochemical technology Co., Ltd, China) samples were treated with nitric acid (HNO₃, AR grade, Sinopharm Chemical Reagent Beijing Co., Ltd, China) solution. In a typical procedure, $SiO₂$ was dispersed into the nitric acid solution $(0, 0.25, 0.5, 1.0, \text{and } 2.0, \text{mol} \cdot L^{-1})$ and constantly stirred in a beaker at 30 \degree C for differernt time (2, 4, 6, 8h). The mass ratio of solid to liquid was fixed at 1:20. After acid treatment, the mixed liquid was filtered and washed with deionized water until neutral, then dried at 110 °C overnight in an oven. The pretreated sample was denoted as $SiO_2(HNO_3)$. The 0.5 wt.% Pd/SiO_2 and 0.5 wt.% $Pd/SiO_2(HNO_3)$ catalysts were prepared by impregnation of SiO_2 and $SiO_2(HNO_3)$ with $Pd(NO_3)_2$: $2H_2O$ (Sigma Aldrich) solution, respectively. After ultrasonication for 30 min and then impregnation under stirring for 4 h, the excess water was removed in a rotary evaporator at 60 °C. Finally, the samples were dried at 110 °C overnight. Before the catalytic activity testing, the samples were reduced at 350 °C with flowing 10 vol.% H_2/N_2 mixed gas at 100 mL‧min-1 for 1 h. After this treatment the catalysts were denoted as $Pd/SiO₂(HNO₃)-R$, $Pd/SiO₂-R$, $SiO₂(HNO₃)-R$ and $SiO₂-R$.

Text S2. Catalyst characterization.

Before characterization, the samples were reduced in H_2 at 350 °C for 1 h. X-ray powder diffraction (XRD) patterns of the catalyst samples were collected with a PANalytical X'Pert PRO X-ray diffractometer (Cu K_{α} as radiation resource, λ =0.154 nm) at 40 kV and 40 mA. The patterns were measured over the 2θ range from 5[°] to 90[°] with a scanning step size of 0.02°. The surface areas and pore characteristics of catalysts

were measured by N_2 adsorption/desorption analysis at -196 °C using a physisorption analyzer (BELSORP-max). Before the N_2 physisorption, the catalysts were degassed at 300 °C for 1 h. The surface area was calculated using the Brunauer-Emmett-Teller (BET) method. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images were obtained on a JEOL JEM 3200FS TEM with 300 kV acceleration voltage.

Fourier transform infrared (FTIR) spectroscopy was performed on a Thermo Fisher IS10 spectrometer using the KBr pellet method. About 2 mg samples were mixed with 160 mg KBr followed by drying under a heat lamp, then the mixture was pressed into a transparent pellet in a die before the FTIR measurements.

Electron spin resonance (ESR) analysis was carried out on a JEOL JES-FA300 ESR spectrometer system. The ESR spectra were performed at a microwave frequency of 9.85 GHz at 77 K without light irradiation.

CO chemisorption, H_2 temperature-programmed reduction (H_2 -TPR), H_2 temperature-programmed surface reduction (H_2-TPSR) , and CO temperatureprogrammed reduction (CO-TPR) cycling experiments were performed in a Micromeritics AutoChem II 2920 apparatus equipped with a thermal conductivity detector (TCD) and mass spectrometer detector (MS).

CO chemisorption was measured by a dynamic pulse method. The catalysts (50 mg) were reduced at 350 °C for 1 h in flowing 10 vol.% H_2/Ar mixed gas, followed by flushing in Ar gas (30 mL·min⁻¹) and cooled down to 30 °C. Then pulses of 5 vol.% CO/He mixed gas (10 mL‧min-1) were introduced to the catalyst until uptake saturation

was obtained. A CO/Pd stoichiometric ratio of 1 has been assumed for the calculation of Pd dispersion [1, 2].

For H₂-TPR, the samples (50 mg, 40-60 mesh) were pretreated at 300 °C in flowing Ar gas (30 mL·min⁻¹) for 1 h. Then a flow of 10% H₂/Ar was passed through the sample at a rate of 50 mL·min⁻¹. The temperature was increased from -50 to 100 $^{\circ}$ C at a rate of 10 °C·min⁻¹, and the H_2 consumption was monitored by TCD after removal of the produced H_2O .

For H_2 -TPSR, the samples (50 mg, 40-60 mesh) were first reduced with 10% H_2/Ar at 350 °C for 1 h, followed by purging with He for 30 min to desorb H_2 . The temperature was then cooled down to 25 °C, and then the gas was switched to O_2 for adsorption for 1 h. After that, He flowed for 30 min to remove weakly adsorbed O_2 . Then a flow of 10% H_2/Ar was passed through the sample at a rate of 50 mL·min⁻¹. The temperature was increased from 0 to 425 $\rm{^{\circ}C}$ at a rate of 10 $\rm{^{\circ}C}\cdot min^{-1}$ and the MS signal of H₂O (m/z=18) was recorded. The H₂-TPSR control experiments and H₂-TPSR experiments followed similar experimental procedures, the difference being that after He flowed for 30 min to remove weakly adsorbed O_2 , He was introduced instead of $10\% \text{ H}$ ₂/Ar.

The CO-TPR cycling experiment was performed according to the following steps. The samples (50 mg, 40-60 mesh) were first reduced with 10% $\rm H_{2}/Ar$ at 350 °C for 1 h, followed by purging with He for 30 min to desorb H_2 . The temperature was then cooled down to 30 °C, and then the gas was switched to $H_2O + O_2$ for adsorption for 1 h. He flowed for 30 min to remove weakly adsorbed $H_2O + O_2$. Then CO-TPR cycle 1

was performed from 0 to 600 \degree C (The end temperature was chosen to avoid the influence of hyperthermia on the catalyst). After that, the sample was again pretreated by $H_2O + O_2$ for adsorption for 1 h. He flowed for 30 min to remove weakly adsorbed $H_2O + O_2$. Then CO-TPR cycle 2 was performed from 0 to 900 °C.

In-situ DRIFTS spectra were recorded with a FTIR spectrometer (Thermo Fisher IS50 FT-IR) equipped with an *in-situ* diffuse reflectance chamber (Harrick) and a liquid N² cooled MCT/A detector. Before recording each DRIFTS spectrum, the samples were reduced in flowing 10 vol.% H_2/N_2 mixed gas at 350 °C for 1 h. All spectra were measured with a resolution of 4 cm⁻¹ and accumulation of 100 scans. A background spectrum was subtracted from each spectrum.

Figure S1. HCHO conversion over Pd/SiO₂-R, Pd/SiO₂-0.25M-R, Pd/SiO₂-0.5M-R, $Pd/SiO₂-1.0M-R$ and $Pd/SiO₂-2.0M-R$ catalysts. The catalyst treated with different nitric acid concentration for 6h. Reaction conditions: 150 ppm of HCHO, 20% O₂, 35% RH, He balance, WHSV 1200,000 mL·g^{-1·h-1}, at 25 °C.

Figure S2. HCHO conversion over Pd/SiO₂-R, Pd/SiO₂-2h-R, Pd/SiO₂-4h-R, Pd/SiO₂-6h-R and Pd/SiO_2-8h-R catalysts. The catalyst treated with nitric acid (1.0 mol $\cdot L^{-1}$) for different times. Reaction conditions: 150 ppm of HCHO, 20% O₂, 35% RH, He balance, WHSV 1200,000 mL·g^{-1·}h⁻¹, at 25 °C.

Figure S3. (a) HCHO conversion, (b) CO_2 yield over $Pd/SiO_2(HNO_3)$, Pd/SiO_2 , $SiO₂(HNO₃)$ and $SiO₂$ catalysts before reduction. Reaction conditions: HCHO 150 ppm, 20 vol.% O_2 , 35% RH, He balance, WHSV 100,000 mL·g^{-1·}h⁻¹, at 25 °C.

Figure S4. CO₂ yield over $Pd/SiO_2(HNO_3)$ -R, Pd/SiO_2 -R, $SiO_2(HNO_3)$ -R and SiO_2 -R catalysts. Reaction conditions: HCHO 150 ppm, 20 vol.% O_2 , 35% RH, He balance, WHSV 100,000 mL·g^{-1·}h⁻¹, at 25 °C.

Figure S5. Nitrogen adsorption-desorption isotherms of Pd/SiO₂(HNO₃)-R, Pd/SiO₂-

R, $SiO₂(HNO₃)$ -R and $SiO₂$ -R catalysts.

Figure S6. H₂-TPSR control experiment profiles of Pd/SiO₂(HNO₃)-R and Pd/SiO₂-R

catalysts.

Figure S7. *In-situ* DRIFTS spectra over Pd/SiO₂-R in a flow of HCHO for 60 min (1); followed by He purging for 60 min (2); O_2 purging for 60 min (3); and finally by O_2 +H2O purging for 60 min (4) at room temperature. Reaction conditions: 150 ppm of HCHO, 20% O₂, 35% RH, He balance, total flow rate of 100 mL·min⁻¹, at room temperature.

Figure S8. *In-situ* DRIFTS spectra over SiO_2 -R in a flow of H_2O for 60 min (1); followed by He purging for 60 min (2), He balance, total flow rate of 100 mL mL·min⁻¹, at room temperature.

To clarify the effect of O_2 on the catalytic performance, O_2 startup-shutdown cycling experiments were performed, and the results are shown in Fig. S7. As shown in Fig. S7, the $Pd/SiO_2(HNO_3)$ -R and Pd/SiO_2 -R catalysts possessed similar phenomena. There was no catalytic activity for HCHO when the flow gases without O_2 (Zone 1 and Zone 3) on two catalysts. After introducing O_2 into the flow gases (Zones 2 and Zones 4), HCHO conversion drastically increased on two catalysts. The result indicated that O² play an important role in HCHO oxidation.

Figure S9. O₂ effect on the activity of the (a) $Pd/SiO₂(HNO₃)-R$ and (b) $Pd/SiO₂-R$ catalysts (Zone 1 and Zone 3, HCHO + He + O_2 ; Zone 2 and Zone 4, HCHO + He + O_2 + H2O). Reaction conditions: 150 ppm of HCHO, 20% O2, 35% RH, He balance, WHSV 300,000 mL \cdot g⁻¹ \cdot h⁻¹, at 25 °C.

References

[1] E.B. Fox, S. Velu, M.H. Engelhard, Y. Chin, J.T. Miller, J. Kropf, C. Song, Characterization of $CeO₂$ -supported Cu–Pd bimetallic catalyst for the oxygen-assisted water–gas shift reaction, J. Catal. 260 (2008) 358-370.

[2] H. Huang, D.Y.C. Leung, Complete oxidation of formaldehyde at room temperature using TiO₂ supported metallic Pd nanoparticles, ACS Catal. 1 (2011) 348-354.