Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Promotional Effect of Indium on the CuO-CeO₂ Catalysts for

Low-Temperature CO Oxidation

Hu Li^a, Fei-Xiang Tian^a, Qi Liu^a, Yi-Fan Han^{a,*} and Minghui Zhu^{a,*}

^a State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

* Corresponding author E-mail: yifanhan@ecust.edu.cn; minghuizhu@ecust.edu.cn

. Supplementary figures

Figure S1. $N_{\rm 2}$ adsorption/desorption isotherms and pore size distributions of ${\sf CeInO}_x$

(a-b)	supports	and	Cu/CeInO _x	(c-d)	catalysts.
-------	----------	-----	-----------------------	-------	------------

Figure S2. XPS spectra of the catalysts showing the (a) O 1s, (b) In 3d regions.

Figure S3. (a) Specific reaction rate and (b) TOF in the absence of 3 vol.% H_2O over Cu/CeInO_x catalysts at 90 °C. (c) Effect of H_2O on CO conversion over Cu/CeInO_x catalysts.

Figure S4. CO conversion of Cu/CeInO_x catalysts at different flow rates (50 and 90 mL·min⁻¹).

CO-TPD was also performed using the same micro-fixed-bed reactor connected to a GC-QMS (HPR-20, Hiden Analytical Ltd.). The pretreatment procedure was identical to the H₂-TPR experiment. First, 50 mg catalyst was cooled down to room temperature in flowing Ar (Air Liquid, 99.999%). The catalyst was then saturated under a CO flow (1%CO/Ar) for 1 h and purged with Ar for 1.5 h to remove physically adsorbed CO molecules. The temperature was then ramped up to 850 °C at a rate of 10 °C·min⁻¹.

Figure S5. (a) CO-TPD profiles of Cu/CeInO_x catalysts. (b) Desorption area of CO₂ during CO-TPD over Cu/CeInO_x catalysts.

Figure S6. Integrated area of (a) CO-Cu⁺ species and (b) the carbon-containing species in the 1150-1700 cm⁻¹ range as a function of the reaction temperature.

Scanning transmission electron microscopy (STEM) measurement was carried out on a ThermoFisher Talos F200X (Figure S7). Energy-dispersive X-ray spectroscopy (EDX) measurement was performed using 4 in-column Super-X detectors (Figure S8).

Figure S7. TEM images and the size distribution of different catalysts: (a, e) $Cu/Ce_{100}In_0O_x$, (b, f) $Cu/Ce_{90}In_{10}O_x$, and (c, g) $Cu/Ce_0In_{100}O_x$.

Figure S8. EDX-Mapping results of (a) $Cu/Ce_{90}In_{10}O_x$, (b) $Cu/Ce_{100}In_0O_x$, and (c) $Cu/Ce_0In_{100}O_x$. The yellow, green, blue and red represent Cu, In, Ce and O, respectively.

Supplementary tables

Table S1

The BET surface area, Barrett Joiner Halenda (BJH) pore volume, and pore size for the supports and catalysts.

Comple	Surface area	Pore volume	Pore size
Sample	(m²/g)	(cm³/g)	(nm)
Ce ₁₀₀ In ₀ O _x	20.9	0.067	10.6
Ce ₉₀ In ₁₀ O _x	24.3	0.068	9.1
$Ce_{50}In_{50}O_x$	30.3	0.181	20.4
$Ce_0In_{100}O_x$	60.0	0.401	20.4
Cu/Ce ₁₀₀ In ₀ O _x	66.7	0.118	6.9
Cu/Ce ₉₀ In ₁₀ O _x	66.3	0.159	8.8
Cu/Ce ₅₀ In ₅₀ O _x	48.5	0.148	11.4
Cu/Ce ₀ In ₁₀₀ O _x	49.5	0.281	19.2

Table S2

The unit cell parameters and particle size of the supports and catalysts as determined by TOPAS. Results of the Sample Characterization by XRD.

		particle size (nm)	
Sample	CeO ₂ lattice parameters (nm)		
		CeO ₂	In ₂ O ₃
$Ce_{100}In_0O_x$	0.5419	7.7	-
$Ce_{90}In_{10}O_x$	0.5416	8.2	-
$Ce_{50}In_{50}O_x$	0.5401	7.1	15.2
$Ce_0In_{100}O_x$	-	-	16.8
$Cu/Ce_{100}In_0O_x$	0.5418	7.9	-
$Cu/Ce_{90}In_{10}O_x$	0.5419	7.2	-
$Cu/Ce_{50}In_{50}O_x$	0.5399	7.3	15.3
Cu/Ce ₀ In ₁₀₀ O _x	-	-	17.0

Table S3

Catalyst	Cu (mol %)	Ce ³⁺ /Ce (%)	I _{sat} /I _{pp}	Cu+/Cu (%)
$Cu/Ce_{100}In_0O_x$	9.07	20.9	0.128	60.4
$Cu/Ce_{90}In_{10}O_x$	10.29	21.3	0.098	66.7
$Cu/Ce_{50}In_{50}O_x$	7.27	13.6	0.125	59.0
Cu/Ce ₀ In ₁₀₀ O _x	4.43	-	0.114	55.6

Quantified XPS Results for the catalysts.

Table S4

Catalyst	0722-Na (wt.%)	0915-Na (wt.%)
Cu/Ce ₉₀ In ₁₀ O _x	0.421	0.295
Cu/Ce ₅₀ In ₅₀ O _x	0.381	0.095

The residual Na content of the Cu/Ce₉₀In₁₀O_x and Cu/Ce₅₀In₅₀O_x catalyst by ICP-OES.

Figure S9. CO conversion of the Cu/Ce₉₀In₁₀O_x and Cu/Ce₅₀In₅₀O_x catalysts with different residual Na.

We have determined the residual Na content of the $Cu/Ce_{90}In_{10}O_x$ and $Cu/Ce_{50}In_{50}O_x$ catalysts prepared on July 22 and September 15 by ICP-OES (PE Avio200) (Table S4). ICP results show that the extensive washing step somewhat successfully removes Na. Steady-state activity measurements reveal that removal (or partial removal) of Na from these catalysts shows almost negligible impact on the CO oxidation activity especially under lower temperatures (Figure S9).