Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Catalytic Upgrading of Ethanol to Higher Alcohols over Nickel-Modified Cu-La₂O₃/Al₂O₃ Catalysts

Jinfeng He,^a Xiuzhen Li,^b Jianyao Kou,^a Tingjie Tao,^a Xinyue Shen,^a Dahao Jiang, *^a Lili Lin^a and Xiaonian Li^a

a. Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, China

b. Fujian Runhua Chemical Co., Ltd., Nanping 354003, China

E-mail addresses: <u>dhjiang@zjut.edu.cn</u> (D.H. Jiang).

Table of Contents

- 1. Guerbet reaction pathway
- 2. Fig. S1. FTIR spectra of CuO/Al₂O₃ catalysts with different CuO loadings
- 3. Fig. S2. FTIR spectra of NiO/Al₂O₃ catalysts with different NiO loadings
- 4. Fig. S3. FTIR spectra of NiO-CuO/Al₂O₃ catalysts with different NiO and CuO loadings
- 5. Table S1. The areas of -OH absorption peaks for CuO/Al₂O₃ catalysts with different CuO loadings.
- 6. Table S2. The areas of -OH absorption peaks for NiO/Al₂O₃ catalysts with different NiO loadings.
- 7. Table S3. The areas of -OH absorption peaks for NiO-CuO/Al₂O₃ catalysts with different NiO and CuO loadings.
- 8. Fig. S4. H₂-TPR profiles of calcined NiO/Al₂O₃ and NiO-La₂O₃/Al₂O₃ catalysts
- 9. Fig. S5. La 3d XPS spectra of 0.65%NiO-Cu-La₂O₃/Al₂O₃ catalyst after reaction
- 10. Table S4. XPS analysis of Cu-La₂O₃/Al₂O₃ and 0.65%NiO-Cu-La₂O₃/Al₂O₃ catalysts
- 11. Table S5. Textural parameters and surface properties of NiO-Cu-La₂O₃/Al₂O₃ catalysts
- 12. Fig. S6. Stability evaluation of 0.65%NiO-Cu-La₂O₃/Al₂O₃ catalyst
- 13. Table S6. Catalytic performance of NiO/Al₂O₃ and NiO-La₂O₃/Al₂O₃ catalysts for ethanol upgrading to higher alcohols

1. Guerbet reaction pathway

Scheme S1. The Guerbet reaction pathway.

2. Fig. S1. FTIR spectra of CuO/Al₂O₃ catalysts with different CuO loadings

Fig. S1. FTIR spectra of CuO/Al₂O₃ catalysts with different CuO loadings: (a) Al₂O₃; (b) 0.63%CuO/Al₂O₃; (c) 1.25%CuO/Al₂O₃; (d) 1.88%CuO/Al₂O₃.

3. Fig. S2. FTIR spectra of NiO/Al₂O₃ catalysts with different NiO loadings

Fig. S2. FTIR spectra of NiO/Al₂O₃ catalysts with different NiO loadings: (a) Al₂O₃; (b) 0.65%NiO/Al₂O₃; (c) 1.27%NiO/Al₂O₃; (d) 1.91%NiO/Al₂O₃.

4. Fig. S3. FTIR spectra of NiO-CuO/Al₂O₃ catalysts with different NiO and CuO loadings

Fig. S3. FTIR spectra of NiO-CuO/Al₂O₃ catalysts with different NiO and CuO loadings: (a) Al₂O₃; (b) 0.32%NiO-0.31%Cu/Al₂O₃; (c) 0.65%NiO-0.63%Cu/Al₂O₃; (d) 0.97%NiO-0.94%Cu/Al₂O₃.

5. Table S1. The areas of -OH absorption peaks for CuO/Al₂O₃ catalysts with different CuO loadings.

Table S1 The areas of -OH absorption peaks centered at 3600 cm⁻¹ for Al_2O_3 support and the CuO/ Al_2O_3 catalysts with different CuO loadings.

Integral area of IR absorption peak of -OH								
Al ₂ O ₃	0.63%CuO/Al ₂ O ₃	1.25%CuO/Al ₂ O ₃	1.88%CuO/Al ₂ O ₃					
63249	63207	63184	51506					

6. Table S2. The areas of -OH absorption peaks for NiO/Al₂O₃ catalysts with different NiO loadings.

Table S2 The areas of -OH absorption peaks centered at 3600 cm⁻¹ for Al_2O_3 support and the NiO/Al₂O₃ catalysts with different NiO loadings^[a].

Integral area of IR absorption peak of -OH							
Al ₂ O ₃	0.65%NiO/Al ₂ O ₃	1.27%NiO/Al ₂ O ₃	1.91%NiO/Al ₂ O ₃				
63249	63077	63008	54734				

[a] The mass fractions of nickel in the NiO/Al_2O_3 catalysts are respectively equal to those of copper in the corresponding CuO/Al_2O_3 catalysts in Table S1.

7. Table S3. The areas of -OH absorption peaks for NiO-CuO/Al₂O₃ catalysts with different NiO and CuO loadings.

Table S3 The areas of -OH absorption peaks centered at 3600 cm⁻¹ for Al_2O_3 support and the NiO-CuO/ Al_2O_3 catalysts with different NiO and CuO loadings^[a].

Integral area of IR absorption peak of -OH								
Al ₂ O ₃	0.32%NiO-0.31%CuO/Al ₂ O ₃	0.65%NiO-0.63%CuO/Al ₂ O ₃	0.97%NiO-0.94%CuO/Al ₂ O ₃					
63249	63373	62808	53550					

[a] The mass fractions of nickel and copper are remained to be equal in each NiO-CuO/Al₂O₃ catalyst.

FTIR studies were performed on ThermoFisher Nicolet IS50 instrument (OMNIC software, MCT detector, 64 scans). All catalysts were pressed into 20 mg of self-supporting wafers and mounted into a quartz IR cell with BaF₂ windows. After the catalysts were pretreated at 473 K for 1 h and cooled to desired temperature in a flow of He, FTIR spectra were collected.

FTIR spectra of Al₂O₃ support, CuO/Al₂O₃, NiO/Al₂O₃ and CuO-NiO/Al₂O₃ catalysts with different CuO and/or NiO loadings were shown in Fig. S1-S3[†] and the areas of -OH absorption peaks centered at 3600 cm⁻¹ for the catalysts and Al₂O₃ support were displayed in Table S1-S3[†]. It can be seen that the intensity of the broad adsorption peak centered at 3600 cm⁻¹ characteristic of stretching vibrations of -OH on surface of the catalysts with different CuO loadings first remained almost unchanged and then decreased when the CuO loading gradually increased from 0 to 1.88%.^{1,2} The intensity of the broad adsorption peak characteristic of stretching vibrations of -OH on surface of the catalysts with different NiO loadings showed a similar trend when the NiO loading increased from 0 to 1.91%. These results showed that both CuO and NiO preferentially bonded with the surface coordinatively unsaturated Al³⁺ and then bonded with the -OH on the surface of Al₂O₃ support.³⁻⁵

8. Fig. S4. H₂-TPR profiles of calcined NiO/Al₂O₃ and NiO-La₂O₃/Al₂O₃ catalysts

Fig. S4. H₂-TPR profiles of calcined catalysts: (a) 2.55%NiO/Al₂O₃; (b) 2.55%NiO-La₂O₃/Al₂O₃; (c) Cu-La₂O₃/Al₂O₃; (d) 2.55NiO-Cu-La₂O₃/Al₂O₃.

9. Fig. S5. La 3d XPS spectra of 0.65%NiO-Cu-La₂O₃/Al₂O₃ catalyst after reaction

Fig. S5. La 3d XPS spectra of 0.65%NiO-Cu-La₂O₃/Al₂O₃ catalyst after reaction.

10. Table S4. XPS analysis of Cu-La₂O₃/Al₂O₃ and 0.65%NiO-Cu-La₂O₃/Al₂O₃ catalysts

Cotalvet	Cu 2p (eV)				Ni 2p (eV)		La 3d (eV)			O 1s	Al 2p	
Catalyst	2p	1/2	2p	3/2	2p _{1/2}	2p _{3/2}	3ċ	3/2	3ċ	l _{5/2}	(eV)	(eV)
Cu-La ₂ O ₃ /Al ₂ O ₃	953.4	952.3	933.4	932.1			856.8	852.1	838.4	835.6	531.1	73.9
0.65%NiO-Cu-La ₂ O ₃ /Al ₂ O ₃	953.7	952.5	933.6	932.3	873.8	855.5	856.7	852.0	838.5	835.6	531.0	74.0

Table S4 XPS parameters of Cu-La $_2O_3/Al_2O_3$ and 0.65%NiO-Cu-La $_2O_3/Al_2O_3$ catalysts

11. Table S5. Textural parameters and surface properties of NiO-Cu-La₂O₃/Al₂O₃ catalysts

Catalyst ^[a]	S _{BET}	$V_t^{[b]}$	D _{pore} [c]	Total acidity	Acidity distribution (mmol·g ⁻¹)		Total basicity	Ba	sicity distrit (mmol·g ⁻¹	oution	
	(m ² /g)	(cm ³ /g)	(nm)	(mmol·g ⁻¹)	Weak	medium	strong	(mmol·g ⁻¹)	Weak	medium	strong
Cu-La ₂ O ₃ /Al ₂ O ₃	155.7	0.53	12.7	1.65	1.13	0.41	0.11	0.72	0.12	0.11	0.49
0.32%NiO-Cu-La ₂ O ₃ /Al ₂ O ₃	167.4	0.57	12.9	1.48	0.99	0.39	0.10	0.77	0.12	0.12	0.53
0.65%NiO-Cu-La ₂ O ₃ /Al ₂ O ₃	173.6	0.57	12.4	1.33	0.95	0.31	0.07	0.84	0.13	0.10	0.61
1.27%NiO-Cu-La ₂ O ₃ /Al ₂ O ₃	166.6	0.57	12.9	_			—	_		—	
2.55%NiO-Cu-La ₂ O ₃ /Al ₂ O ₃	165.5	0.56	12.9	1.38	0.92	0.40	0.06	0.78	0.14	0.12	0.52

Table S5 Textural parameters and surface properties of NiO-Cu-La₂O₃/Al₂O₃ catalysts.

[a] The Cu loadings of all the catalysts were fixed at 6wt% and the Cu/La molar ratios were 3:1.5; [b] Single point pore volume at P/P₀=0.99; [c] The average pore diameters (DFT method).

12.Fig. S6. Stability evaluation of 0.65%NiO-Cu-La₂O₃/Al₂O₃ catalyst

Fig. S6. Stability evaluation of 0.65%NiO-Cu-La₂O₃/Al₂O₃ catalyst.

13. Table S6. Catalytic performance of NiO/Al₂O₃ and NiO-La₂O₃/Al₂O₃ catalysts for upgrading ethanol to higher alcohols

Table S6. Catalytic performance of NiO/Al₂O₃ and NiO-La₂O₃/Al₂O₃ catalysts for ethanol upgrading to higher alcohols^[a]

Catalysts	Conversion (%) -	Selectiv	Liquid yield	
		Ethyl ether	Others ^[b]	(%)
0.65%NiO/Al ₂ O ₃	12.5	100	0	99.5
0.65%NiO-La ₂ O ₃ /Al ₂ O ₃	4.6	100	0	99.4

[a] Conversion and selectivity are obtained at steady-state; reaction conditions: catalyst, 1.0 g; 523 K, 3 MPa (N₂), LHSV=2 $ml/(g_{cat}\cdot h)$, N₂/ethanol(v/v)=250:1. [b]Other products include acetaldehyde, butyraldehyde, ethyl acetate, n-butanol, etc.

References

- 1. M. I. Zaki and H. Knözinger, Mater. Chem. Phys., 1987, 17, 201-215.
- F. Wang, J. Z. Ma, S. H. Xin, Q. Wang, J. Xu, C. B. Zhang, H. He and X. C. Zeng, *Nat. Commun.*, 2020, 11, 529.
- 3. E. Borello, A. Cimino, G. Ghiotti, M. Lo Jacono, M. Schiavello and A. Zecchina, *Discuss. Faraday Soc.*, 1971, **52**, 149-160.
- 4. C. Zhao, Y. Z. Yu, A. Jentys and J. A. Lercher, *Appl. Catal.*, *B*, 2013, **132**, 282-292.
- 5. Y. M. Zhang, Y. Zu, D. D. He, J. Liang, L. H. Zhu, Y. Mei and Y. M. Luo, *Appl. Catal.*, *B*, 2022, **315**, 121539.