## Ce<sub>1-x</sub>Sr<sub>x</sub>O<sub>2-δ</sub> solid solution support cobalt-based catalysts for hydrogen production via auto-thermal reforming of acetic acid

Chenghong Shu<sup>a,d,#</sup>, Chenyu Ding<sup>a,#</sup>, Yan Liu<sup>a</sup>, Wenjing Sun<sup>c</sup>, Jia Huang<sup>a</sup>, Fuxia Liao<sup>a</sup>, Lihong Huang<sup>a,d,\*</sup>, Ning Wang<sup>b,\*</sup>

<sup>a</sup> Department of Chemical and Pharmaceutical Engineering, Chengdu University of Technology, Chengdu 610059, China

<sup>b</sup> Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China

<sup>c</sup> China-America Cancer Research Institute, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, Guangdong 523808, China

<sup>d</sup> State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China

# These authors contributed equally to this work.

\* Corresponding author at: Department of Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China

E-mail address: <u>ning.wang.1@bjut.edu.cn</u> (N. Wang), <u>huanglihong06@cdut.cn (</u>L. Huang)





**Fig. S2.** Effect of temperature on the HAc conversion of the  $CCS_x$  catalysts at GHSV= 50000 mL·g<sub>catal</sub> - <sup>1</sup>·h<sup>-1</sup> in ATR



Fig. S3. Arrhenius plots of  $CCS_x$  catalyst: (a) CCS0, (b) CCS0.75, (c) CCS1.75, (d) CCS2.25 (e) CS3.25

| Catalysts | Main Phase composition     | Space group _ | Cell parameters (Å) |       |       |  |
|-----------|----------------------------|---------------|---------------------|-------|-------|--|
|           |                            |               | a                   | b     | с     |  |
| CCS0      | CeO <sub>2</sub>           | Fm-3m         | 5.411               | 5.411 | 5.411 |  |
| CCS0.75   | $Ce_{1-x}Sr_xO_{2-\delta}$ | Fm-3m         | 5.423               | 5.423 | 5.423 |  |
| CCS1.75   | $Ce_{1-x}Sr_xO_{2-\delta}$ | Fm-3m         | 5.430               | 5.430 | 5.430 |  |
| CCS2.25   | $Ce_{1-x}Sr_xO_{2-\delta}$ | Fm-3m         | 5.425               | 5.425 | 5.425 |  |
| CS3.25    | SrCO <sub>3</sub>          | Pm-cn         | 5.107               | 8.421 | 6.028 |  |

**Table S1.** Cell parameters of  $CCS_x$  catalysts.

| Catalysts | Hydrogen consumption (mmol/g) |        | Co <sup>0</sup><br>Reducibility (%) |  |
|-----------|-------------------------------|--------|-------------------------------------|--|
|           | Peak 1                        | Peak 2 |                                     |  |
| CCS0      | 0.93                          | 1.39   | 10.5                                |  |
| CCS0.75   | 1.03                          | 2.01   | 15.4                                |  |
| CCS1.75   | 0.45                          | 0.77   | 8.5                                 |  |
| CCS2.25   | 0.37                          | 0.35   | 7.2                                 |  |
| CS3.25    | 0.11                          | 0.23   | 4.3                                 |  |

Table S2. Hydrogen uptake and  $Co^0$  reducibility from H<sub>2</sub>-TPR

| Catalysts | Co <sup>0</sup> dispersion <sup>a</sup> | Hydrogen production rate (µmol- $H_2 \cdot s^{-1} \cdot gcat^{-1})^b$ | TOF of H <sub>2</sub><br>(10 <sup>-2</sup> s <sup>-1</sup> ) <sup>c</sup> | Activation energy (E <sub>a</sub> )<br>kJ*mol <sup>-1</sup> |
|-----------|-----------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------|
| CCS0      | 0.066                                   | 7.57                                                                  | 12.8                                                                      | 31.1                                                        |
| CCS0.75   | 0.074                                   | 9.77                                                                  | 14.8                                                                      | 28.6                                                        |
| CCS1.75   | 0.046                                   | 0.58                                                                  | 1.5                                                                       | 53.1                                                        |
| CCS2.25   | 0.027                                   | 0.33                                                                  | 1.4                                                                       | 56.7                                                        |
| CS3.25    | 0.015                                   | 0.06                                                                  | 0.5                                                                       | 65.8                                                        |

Table S3. The  $Co^0$  dispersion, hydrogen production rate, TOF-H<sub>2</sub> and E<sub>a</sub> of  $CCS_x$  catalysts

 $^a$  Obtained from H2-TPD by assuming Had/Co^0\_{surf} =1

<sup>b</sup>Obtained from Eq. (14)

<sup>c</sup> Obtained from Eq. (15)

|      | Ce-O1 | Ce-O2 | Ce-O3 | Ce-O4 | Ce-O5 | Ce-O6 |  |
|------|-------|-------|-------|-------|-------|-------|--|
| d(Å) | 2.35  | 2.37  | 2.37  | 2.37  | 2.37  | 2.37  |  |
|      | Sr-O1 | Sr-O2 | Sr-O3 | Sr-O4 | Sr-O5 | Sr-O6 |  |
| d(Å) | 2.59  | 2.57  | 2.60  | 2.58  | 2.60  | 2.57  |  |

Table S4. The distances between Ce/Sr atom and its nearest O atoms.

**Table S5.** The calculated  $E_{vac}$  (in eV) for the Ce<sub>1-x</sub>Sr<sub>x</sub>O<sub>2- $\delta$ </sub> (111) surface with one and two O vacancies. For the CeO<sub>2</sub>(111) surface, the surface and subsurface O vacancy formation energies were 2.58 and 2.50 eV, respectively. V<sub>OI</sub>-V<sub>OIII</sub> were the surface vacancies and VO<sub>IV</sub>-V<sub>OV</sub> were the subsurface vacancies for the Ce<sub>1-x</sub>Sr<sub>x</sub>O<sub>2- $\delta$ </sub>(111) surface; V<sub>OIV-1</sub>-V<sub>OIV-2</sub> were the surface vacancies and V<sub>OIV-3</sub>-V<sub>OIV-4</sub> were the subsurface vacancies.

| $Ce_{1-x}Sr_xO_{2-\delta}{}^a$ | Var     | Ver Verreit | Vou       | V       | Vou     |
|--------------------------------|---------|-------------|-----------|---------|---------|
| $(Ce_{47}Sr_1O_{95})$          | V OI    | V OII       | V OIII=OV | • OIV   | • 001   |
| E <sub>va</sub> (eV)           | -0.705  | -0.704      | -0.776    | -0.804  | -0.778  |
| $Ce_{1-x}Sr_xO_{2-\delta}^{b}$ | Vou     | Va          |           | Vou     | Vou     |
| $(Ce_{47}Sr_1O_{94})$          | • OIV-1 | • OIV-2     |           | • 010-3 | • 010-4 |
| E <sub>va</sub> (eV)           | 1.22    | 0.92        |           | 1.05    | 1.96    |

<sup>a</sup> The unique structure of Sr-CeO<sub>2</sub> with one O vacancy

<sup>b</sup> The unique structure of Sr-CeO<sub>2</sub> with two O vacancy (based on O<sub>IV</sub> structure by removing of the second structurally unique oxygen atoms)