Appendix A: Supporting Information (SI):

Oxygen vacancies enhance the photocatalytic deep oxidation of NO over N-doped KNbO₃ catalyst

Xinjie Song^{a,b}, Wenjie Jiang^{a,b}, Zehua Cai^{a,b}, Xun Chen^a, Wenxin Dai^{a,b}*, Xianzhi

 $Fu^{a}*$

^a Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on

Energy and Environment, Fuzhou University, Fuzhou, 350002, China

^b Key Laboratory of Eco-materials Advanced Technology (Fuzhou University), Fujian

Province University, Fuzhou, 350002, China

*Corresponding author: Wenxin Dai

Tel & Fax: +86-591-83779083

E-mail: daiwenxin@fzu.edu.cn& xzfu@fzu.edu.cn

SI 1. The figure of the reactor

Fig. S1. The reactor with circulating water bath

SI 2. Reactor schematic and reaction system

Fig. S2. The reaction system for the catalyst samples evaluation

SI 3. The digital photo of samples

Fig. S3. The digital photo of the KNbO₃ (a), 1.0-N-KNbO₃ (b), 1.5-N-KNbO₃ (c) and 2.0-N-KNbO₃ (d), respectively

SI 4. Lattice parameters

	Lattice parameters (Å)			
samples	а	b	с	
KNbO ₃	3.971	5.692	5.719	
1.0-N-KNbO ₃	3.971	5.697	5.723	
1.5-N-KNbO ₃	3.971	5.697	5.723	
2.0-N-KNbO ₃	3.971	5.697	5.723	

Table S1. Lattice parameters of KNbO₃, 1.0-N-KNbO₃, 1.5-N-KNbO₃ and 2.0-N-KNbO₃

SI 5. Band gaps analyses

The band gaps for as-synthesized samples were calculated using the following empirical equation:

 $(\alpha h\nu)n = A \cdot (h\nu - Eg)$

where α is the absorption coefficient, h is the Planck constant, v is light frequency, A is a constant, E_g is the bandgap energy, respectively. The value of n is equivalent to 2, which corresponds to direct semiconductors, to 1/2 for the indirect transition. In this case, the direct transition is observed. Thus, n is 2 in this work.

SI 6. Textural characteristics (N₂-physisorption)

The N₂ adsorption-desorption isothermal plots of the as-prepared catalyst were shown in Fig. S4. The isotherms of these samples were classical type IV with a type H3 hysteresis loop according to IUPAC. The specific surface area of KNbO₃ was 3.63 m² g⁻¹ by the BET calculation method. Moreover, the specific surface area, pore volume and pore size did not change significantly after N doping (Table S2).

Fig. S4. The N₂ adsorption-desorption isotherms of KNbO₃ and N-KNbO₃

-	-	-	
sample	Surface area	Pore	Pore
	(m^2g^{-1})	volume (mL g-	diameter (nm)
		1)	
KNbO ₃	3.63	0.013	14.28
N-KNbO ₃	5.46	0.017	13.35

Table S2. Specific surface area and pore structure parameters of KNbO3 and N-KNbO3

SI 7. The mapping and EDX

Fig. S5. The mapping and EDX spectra of N-KNbO₃ (a, b) of N-KNbO₃

Table. S3. Determination of the amount of N doping

Samples	N doping (at.%)	N doping (at.%)	
1.5-N-KNbO ₃	7.12 ª	6.85 ^b	

a: Determined by EDX spectra. b: XPS.

According to different test characterizations, the content of incorporated N was approximately 7at.%.

SI 8. NO_x species distribution

The amount of nitrate (n_{NO3}) and nitrite (n_{NO2}) accumulated during the catalytic oxidation of NO was measured by Thermo Fisher Dionex Aquion ion chromatography. The specific method was as follows: fully immerse the catalyst sample after continuous reaction in 100 mL of deionized water, wash and filter to obtain the supernatant, and then take 5 mL into the ion chromatography tube for sample analysis. In addition, the total NO removal (n_{NO}) and NO₂ production (n_{NO2}) are calculated using the following formula:

$$n_{\rm NO} = (f/22.4) \int (\Phi_{\rm NO} - \Phi_{\rm NOi}) dt$$
$$n_{\rm NO2} = (f/22.4) \int \Phi_{\rm NO2} dt$$

Table S4. The total amounts of NO removal and different NO_x production after five cycle tests at room temperatures over kNbO₃ and X-N-KNbO₃ samples

Sample	$n_{\rm NO}$ / umol	n _{NO2} / umol	$\boldsymbol{n}_{\text{NO2}}$ -/ umol	n _{NO3} -/ umol	$\pmb{n}_{ ext{other}}$ / umol
KNbO ₃	1.133	0.283	0.397	0.283	0.170
1.0-N- KNbO ₃	4.522	0.565	1.967	0.995	0.995
1.5-N- KNbO ₃	5.638	0.676	2.594	1.297	1.071
2.0-N- KNbO ₃	4.404	0.616	1.762	1.145	0.881

SI 9. Band structure analysis

In Fig. S6a and b, the valence band energy of KNbO₃ and 1.5-N-KNbO₃ is 2.56 and 2.38 eV. According to the formula: $E_{NHE/V} = \Phi + VB_{max} - 4.44$ (Φ is the electronic work function of the instrument, 4.2 eV), the valence band position NHE (PH=7) is 2.32 and 2.14 V. According to the experimental results of DRS in the manuscript, the bandgap of KNbO₃ and 1.5-N-KNbO₃ are 3.30 and 2.83 eV. Finally, we conclude that the conduction bands of KNbO₃ and 1.5-N-KNbO₃ are -0.98 and -0.69 V.

The energy band structure of the sample is shown in Fig. S7. The doping of N introduces oxygen vacancies to form defect energy levels, which increases the valence band position of KNbO₃ and reduces the bandgap. In addition, the positions of the valence band and conduction band can meet the formation requirements of ROS (\cdot O₂⁻ and \cdot OH).

Fig. S6. The value bands of KNbO₃ (a) and 1.5-N- KNbO₃ (b)

Fig. S7. The band structure of KNbO₃ (a) and 1.5-N- KNbO₃ (b)

SI 10. Mechanism of NO removal over KNbO₃

1. The adsorption process of NO over KNbO₃ in the dark:

(1) The NO reacted with surface hydroxyl groups:

$$NO-K^{+} + 2OH^{-} (3705 \text{ cm}^{-1}) \rightarrow K^{+}-NO_{2}^{-} (1535 \text{ cm}^{-1}) + H_{2}O (1655 \text{ cm}^{-1})$$
(1-1)

$$NO-K^{+} + 2OH^{-} (3644 \text{ cm}^{-1}) \rightarrow K^{+}-NO_{3}^{-} (1555 \text{ cm}^{-1}) + H_{2}O$$
(1-2)

$$NO-Nb^{5+} + 2OH^{-} (3705 \text{ cm}^{-1}) \rightarrow Nb^{5+}-NO_{2}^{-} (1254 \text{ cm}^{-1}) + H_{2}O$$
(1-3)

NO- Nb⁵⁺ + 2OH⁻ (3644 cm⁻¹)
$$\rightarrow$$
 Nb⁵⁺-NO₃⁻ (1366 cm⁻¹) + H₂O (1-4)

2. The photocatalytic oxidation of NO over KNbO₃:

(1) Photogenerated electrons and holes were generated under visible light:

$$KNbO_3 + hv \rightarrow h^+ + e^-$$
 (2-1)

(2) The Photogenerated holes reacted with surface hydroxyl groups and water to generate hydroxyl radicals:

$$h^+ + OH^- \rightarrow OH$$
 (2-2)

$$h^+ + H_2 O \rightarrow \cdot OH + H^+$$
 (2-3)

(3) The \cdot OH interacted with NO to generate nitrate or nitrite:

$$NO-Nb^{5+} + \cdot OH \to Nb^{5+}-NO_3^{-} (1366 \text{ cm}^{-1}) + H^+$$
 (2-4)

$$NO-Nb^{5+}+ \cdot OH \to Nb^{5+}-NO_2^{-}(1254 \text{ cm}^{-1}) + H^+$$
 (2-5)

References

[1] Q. Ji, L. Bi, J. Zhang, H. Cao and X. S. Zhao, *Energy Environ. Sci.*, 2020, **13**, 1408-1428.

[2] X. Pan, M. Q. Yang, X. Fu, N. Zhang and Y. J. Xu, Nanoscale, 2013, 5, 3601-3614.

[3] G. Cheng, X. Tan, X. Song, X. Chen, W. Dai, R. Yuan and X. Fu, *Appl. Catal. B-Environ.*, 2020, **277**, 119196.

[4] H. Shao, X. Bai, H. Cui, G. Pan, P. Jing, S. Qu, J. Zhu, Y. Zhai, B. Dong and H. Song, *Nanoscale*, 2018, **10**, 1023-1029.

[5] M. Hu, S. Du, B. Dong, Y. Qi, Z. Feng and F. Zhang, J. Mater. Chem. A, 2022, 10, 16541-16546.

[6] X. Song, G. Qin, G. Cheng, W. Jiang, X. Chen, W. Dai and X. Fu, *Appl. Catal. B-Environ.*, 2021, **284**, 119761.