Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Tab. S1: Characteristic temperatures and CO conversion of a cooled multi-tubular fixed bed FT reactor for a uniform axial activity (C_a). Assumptions: 1) $T_{max,ax} < 240$ °C to avoid excessive methane formation; 2) $T_{cool,max} = T_{cool,\ ignition}$ - 5 K to ensure thermal stability of reactor; 3) $C_a < 4$, corresponding to a realistic value of the max. Co content of 40 wt.-%.

C _a	Χ _{co} ^a in %	τ _{cool} in °C	τ _{ig} in °C	τ _{max,ax} in °C	$r_{m,eff,CO}(\eta_{pore} \text{ in }\%) \text{ at } T_{max,ax} \text{ for }$ $X_{CO} = 0 \text{ in } \text{mol}_{CO} \text{ kg}_{cat}^{-1} \text{ s}^{-1}$
0.25	21.2	231.0	249.0	240.0	0.00262 (70%)
0.5	29.8	226.1	237.7	240.0	0.00417 (55%)
1	38.4	220.1	226.6	240.0	0.00621 (42%)
1.125	39.8	219.0	224.8	240.0	0.00662 (39%)
1.25 (best case)	40.9	218.0	223.1	240.0	0.00700 (37%)
1.5	40.6	215.3	220.3	237.1	0.00696 (38%)
2	39.8	211.0	216.0	232.2	0.00679 (39%)
3	38.5	205.0	210.0	225.1	0.00645 (41%)
4	37.4	200.8	205.8	220.1	0.00621 (43%)

a It may be interesting to know X_{CO} reached at the maximum axial temperature ($z \approx$ about 2 m, see Fig.3): 4% ($C_a = 0.25$), 5% for $C_a = 0.5$, 8% ($C_a = 1.25$), 8% ($C_a = 1.5$), and 1% ($C_a = 3$ and 4).

A good approximation for the maximum temperature difference between the maximum axial temperature and the cooling temperature to avoid a temperature runaway of a cooled fixed bed reactor is given by:¹

$$\Delta T_{max} = T_{max,ax}^* - T_{max,cool} = \frac{R T_{max,ax}^* T_{max,cool}}{E_{A,eff}}$$
 (S1)

The temperatures $T^*_{max,ax}$ and $T_{max,cool}$ are the highest values of the axial temperature (center of bed) and the cooling temperature, respectively, to avoid a thermal runaway.

The effective activation energy $E_{A,eff}$ valid for the axial position, where $T_{max,ax}$ is just reached, is calculated based on the mean radial temperature $T_{mean} = 0.5$ ($T_{max,ax} - T_{cool}$) by:

$$E_{A,eff} = \frac{R \ln \left[\frac{r_{CO,eff,T_{mean}}}{r_{CO,eff,T_{mean} + 1 K}} \right]}{\left[\frac{1}{(T_{mean} + 1 K)} - \frac{1}{T_{mean}} \right]}$$
(S2)

Tab. S2 shows the values of ΔT_{max} calculated by the reactor model and by the approximation based on Eq. (S1) and Eq. (S2). The deviation of only about 2 K is small, and hence, the agreement is quite well, which is also a good proof, that the calculations by the reactor model are reliable.

Fig. S1: Axial profiles of effective rate of conversion of CO and pore effectiveness factor in a cooled fixed bed FT reactor for three different but uniform axial activities (value of C_a) (conditions/assumptions see Fig. 3 - 5).

Tab. S2: Temperature difference between highest axial temperature (center of tube) and cooling temperature: Comparison of selected modelled values and estimations based on equations (S1) and (S2). Case of cooled fixed bed FT reactor for different but uniform axial activities (value of C_a) (conditions/assumptions see Figs. 3 to 5).

		Values of	reactor n	nodel	Calculations by Eq. (S1) and Eq. (S2)					
Ca	T * _{max,ax} in °C	T _{max,cool}	T _{mean}	T* _{max,ax} - T _{cool}	,	$\Delta T_{max} = R T_{max,ax} T_{coo} / E_{a,eff}$				
l in C		in °C	in °C	in K	in kJ/mol	in K				
	Cases for $T_{cool,max} = T_{ig} - 5 \text{ K}$ (only limited by runaway)									
0.25	265.5	244.3	257.4	26.1	82	28.5				
0.5	257.7	232.7	245.2	25.0	84	26.6				
1	244.6	221.6	233.1	23.0	87	24.5				
1.5	237.1	215.3	226.2	21.8	89	23.3				
2	232.2	211.0	221.6	21.1	90	22.6				
3	225.1	205.0	215.1	19.3	92	21.5				

4	220.1	200.8	210.5	18.9	94	20.7
		l				

Tab. S3: Characteristic temperatures and CO conversion of a two-zone FT reactor for different activities in both zones but constant mean activity of $C_{a,mean}$ of 1.25 = 0.5 ($C_{a,1} + C_{a,2}$). Assumptions: 1) $T_{max,ax} < 240$ °C to avoid excessive formation of CH₄; 2) $T_{cool,max} = T_{cool, ignition}$ - 5 K to ensure thermal stability of reactor.

Activity in zone 1 (z < 6 m) and zone 2 (6 m < z < 12 m)		X _{CO}	T _{cool}	T_{ig}	T _{max,ax,1}	T _{max,ax,2}	
C _{a,1}	C _{a,2}	in %	in °C	in °C	in °C	in °C	
0.5	2	30.4	213.0	218.0	217.6	236.6	
0.75	1.75	36.5	216.1	231.1	225.8	240.0	
0.9	1.6	39.7	217.7	228.2	231.6	240.0	
0.95	1.55	40.8	218.2	227.4	233.7	240.0	
1	1.5	42.1	218.7	226.6	236.1	240.0	
1.05	1.45	43.6	219.3	225.8	238.9	240.0	
1.067 (best case)	1.433	44.1	219.5	225.5	240.0	240.0	
1.1	1.4	43.4	219.2	225.1	240.0	238.5	
1.175	1.325	42.1	219.3	224.1	240.0	236.0	
1.25	1.25	40.9	218.0	223.1	240.0	234.6ª	
1.5	1	35.4	215.3	220.3	237.1	231.8	

^a In this case, there is no local maximum in axial temperature in the rear part of the bed. The given temperature is just the value reached at z = 6, i.e. at the entrance in zone 2.

Tab. S4: Characteristic temperatures and CO conversion of a cooled fixed bed two-zone FT reactor for different activities in the two zones of equal length (6 m). Assumptions: 1) $T_{max,ax} < 240$ °C to avoid excessive CH₄ formation; 2) $T_{cool,max} = T_{cool, ignition} - 5$ K to ensure thermal stability of reactor; 3) $C_a < 4$, which corresponds to a realistic value of maximum Co content of about 40 wt.-%.

Activity in zone 1 (z < 6 m) and zone 2 (6 m < z < 12 m)		Mean activity	X _{co}	T _{cool}	T _{cool, ig}	T _{max,ax,1}	T _{max,ax,2}
C _{a,1}	C _{a,2}	C _{a,mean}	in %	in °C	in °C	in °C	in °C
0.5	0.59	0.545	32.1	226	237.7	239.9	240.0
0.75	0.95	0.85	38.5	222.6	231.1	239.8	240.0
1	1.35	1.175	43.1	220.0	226.6	239.7	239.9
1.25	2.75	2	41.7	211.7	216.7ª	223.8	239.5
1.5	2.2	1.85	47.5	215.3	220.3	237.1	238.7
1.62	2.38	2	47.2	214.1	219.1	235.7	237.3
2	3.45	2.725	50.4	210.9	216.0	231.8	240
2	4	3	47.8	208.3	216.0	224.4	240.0
2.25	4	3.125	51.2	209.2	214.2	230.0	240
2.26 (best case)	4	3.13	51.3	209.2	214.2	230.1	240
2.27	4	3.135	51.0	209.1	214.1	229.9	239.5
2.28	4	3.14	50.7	209.0	214.0	229.7	239.1
2.3	4	3.15	50.7	208.9	213.9	230.0	239.0
2.5	4	3.25	48.1	207.7	212.7	228.3	233.5
2.75	4	3.375	45.6	206.3	211.3	226.7	228.9
3.5	4	3.75	40.2	202.8	207.8	222.6	219.7
4	4	4	37.4	200.8	205.8	220.1	216.1

^a In contrast to all other cases, here the ignition (thermal runaway) takes place in the second zone.

Tab. S5: Optimal distribution of activity in a two-zone FT reactor for different mean activities (each zone has a length of 6 m). Assumptions: 1) $T_{max,ax} < 240^{\circ}\text{C}$ to avoid excessive CH₄ formation; 2) $T_{cool,max} = T_{cool,\ ignition}$ - 5 K to ensure stability of reactor; 3) $C_a < 4$, which corresponds to a realistic value of maximum Co content of about 40 wt.-%.

Optimal activity in zone 1 ($z < 6$ m) and zone 2 ($6 \text{ m} < z < 12 \text{ m}$) $C_{a,1}$ $C_{a,2}$		Mean activity	X _{co} in %	T _{cool} in °C	T _{cool, ig} in °C	T _{max,ax,1} in °C	T _{max,ax,2} in °C
		C _{a,mean}					
0.465	0.535	0.5	30.9	226.6	238.9	240.0	239.9
0.752	0.948	0.85	38.7	222.7	231.0	240.0	240.0
1.067	1.433	1.25	44.1	219.5	225.6	240.0	240.0
1.56	2.44	2	48.8	214.7	219.7	236.4	240.0
2.26	4	3.13	51.3	209.2	214.2	230.1	240.0
3	4	3.5	43.4	205.0	210.0	225.1	225.1
4	4	4	37.4	200.8	205.8	220.1	216.1

Fig. S2: Axial temperature profiles in the center of a single tube (r = 0) of a cooled fixed bed FT reactor and CO conversion for a constant (mean) value of activity coefficient C_a of 1.25. Case 1: C_a = 1.25 is realized by catalyst particles with C_a = 1.25 without dilution with inert particles. Case 2: C_a = 1.25 is realized by a 1-to-1 mixture of catalyst particles (C_a = 2.5) with inert particles (same density. C_a = 0). i.e. m_{cat} = m_{inert} . Other assumptions and conditions as given in Fig. 3.