Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting Information

In Situ Synthesis of CdS@NH₂-MIL-125 Nanocomposite for Enhanced Photocatalytic Oxidative Desulfurization of Dibenzothiophene

Mona Hosseini-Sarvari*a, Saeede Sakia, Yanlong Gub, Dengyue Zhengb

^aNano Photocatalysis Lab, Department of Chemistry, Shiraz University, Shiraz 7194684795, I.R. Iran

^bInstitute of Physical Chemistry and Industrial Catalysis, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P.R.China

* Corresponding author, E-mail address: <u>hossaini@shirazu.ac.ir</u> (Mona Hosseini-Sarvari)

Ta	Fable of contents		
1.	Photocatalysts characterization	S3	
2.	Optimization of reaction conditions	S3	
3.	HPLC chromatograms in the photocatalytic oxidative desulfurization of (DBT)	S4	
4.	References		

1. Photocatalyst characterization

Table S1. Results of bandgap calculation for synthesis photocatalysts

Photocatalyst name	Bandgap (eV)
CdS	2.1
NH ₂ -MIL-125	2.6
CdS@NH ₂ -MIL-125	2.52

2. Optimization of reaction conditions

Table S2: Solvent	Screening [a]
-------------------	---------------

Entry	Solvent	DBT removal percent (%)
1	Toluene	76.8
2	<i>n</i> -Octane	3.5
3	<i>n</i> -Heptane	2
4	CH ₃ CN	56 (after 3 days)
5	EtOH	82 (after 3 days)
6	DMSO	3
7	THF	26.2
8	MeOH	2
9	<i>n</i> -Octane/CH ₃ CN	6.5
10	Toluene/ CH ₃ CN	27
11	EtOH/ CH ₃ CN	12
12	EtOH/ H ₂ O	5.5
13	Toluene/H ₂ O	15
14	Toluene/EtOH	20

^[a] Reaction conditions: CdS@NH₂-MIL-125 (20 mg), t = 24 h, T = r.t, DBT = 100 ppm, 12 W

blue LED under oxygen gas.

3. HPLC chromatograms in the photocatalytic oxidative desulfurization of DBT

The concentration obtained of DBT after the reaction was determined by reversed-phase HPLC on an Agilent 1100 using Merck SP-18 column and Lichrospher C-18 bonded packing. The mobile phase was acetonitrile and water (75/25 V/V) and UV detector at 245 nm with a flow rate of 0.8 mL/min. An external standard of DBT was found to elute under these conditions at 6.7 min according to the method used in reference [1]. It seems that the peak appeared in retention time of 3.15-3.40 is related to DBT sulfone. Thus DBT sulfone obtained by the photo-oxidation was found to elute around 3.15-3.40 min [1].

Figure S1. HPLC Chromatogram of toluene as solvent (retention time 4.145-5.79 min).

Figure S2. HPLC Chromatogram of 100 ppm standard of DBT in toluene (retention time 5.5-6.7 min).

Figure S3. HPLC Chromatogram [Reaction condition: Without catalyst, t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, 12 W blue LED, under oxygen gas]

Figure S4. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, for 2 h in the dark and under oxygen gas], (Retention time 3.30 min)

Figure S5. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, for 5 h under visible light irradiation and oxygen gas] (Retention time 3.43 min).

Figure S6. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, for 8 h under visible light irradiation and oxygen gas] (Retention time 3.30 min).

Figure S7. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, for 12 h under visible light irradiation and oxygen gas] (Retention time 3.28 min).

Figure S8. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, for 17 h under visible light irradiation and oxygen gas] (Retention time 3.28 min).

Figure S9. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, for 20 h under visible light irradiation and oxygen gas] (Retention time 3.30 min).

Figure S10. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, for 24 h under visible light irradiation and oxygen gas] (Retention time 3.40 min).

Figure S11. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, for 26 h under visible light irradiation and oxygen gas] (Retention time 3.28 min).

Figure S12. HPLC Chromatogram [Reaction condition: 5 mg CdS@NH₂-MIL-125, , t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, 12 W blue LED, under oxygen gas] (Retention time 3.21 min)

, t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, 12 W blue LED, under oxygen gas] (Retention time 3.18 min)

Figure S14. HPLC Chromatogram [Reaction conditions: 15 mg CdS@NH₂-MIL-125, , t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, 12 W blue LED, under oxygen gas]

(Retention time 3.18 min)

Figure S15. HPLC Chromatogram in dark conditions [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, 12 W blue LED, under oxygen gas]

Figure S16. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125,

, t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, 12 W blue LED, under natural sunlight and oxygen gas] (Retention time 3.18 min).

Figure S17. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, , t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, 12 W white CFL, under oxygen gas] (Retention time 3.18 min).

Figure 1

Figure S18. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, TEA scavenger under oxygen gas] (Retention time 3.18 min).

Figure S19. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, TEMPO scavenger under oxygen gas] (Retention time 3.18 min).

S14

Figure S20. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, BQ scavenger under oxygen gas] (Retention time 3.18 min).

Figure S21. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, IPA scavenger under oxygen gas] (Retention time 3.18 min).

S15

Figure S22. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, 4 h On under oxygen gas] (Retention time 3.18 min).

Figure S23. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, 3 h Off under oxygen gas] (Retention time 3.18 min).

Figure S24. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, 3 h On under oxygen gas] (Retention time 3.18 min).

Figure S25. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, 3 h Off under oxygen gas] (Retention time 3.18 min).

S17

Figure S26. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 500 ppm, solvent = Toluene, 3 h On under oxygen gas] (Retention time 3.18 min)

Figure S27. HPLC Chromatogram [Reaction condition: 20 mg recycled photocatalyst after 5 runs, t = 24 h, T = r.t, DBT = 100 ppm, solvent = Toluene, under oxygen gas] (Retention time 3.18 min).

Figure S28. HPLC Chromatogram of 100 ppm standard of dibenzothiophene in CH₃CN as solvent (Retention time 4.5-5 min).

Figure S29. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 100 ppm, solvent = CH₃CN ,12 W blue LED, under oxygen gas] (Retention time 3.18-5.5 min)

Figure S30. HPLC Chromatogram of 100 ppm standard of dibenzothiophene in EtOH as solvent (retention time 6.5-7 min).

1400.000 D 1200.000 1000.000 Voltag 800.000 600.000 400.000 200.000 0.000 3.000 4.000 Time (min) 0.000 1.000 2.000 5.000 6.000 7.000 8.000

Figure S31. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 100 ppm, solvent = EtOH,12 W blue LED, under oxygen gas] (Retention time 4.5-6 min)

Figure S32. HPLC Chromatogram of 100 ppm standard of dibenzothiophene in *n*-Octane as solvent (retention time 6.5-7 min).

Figure S33. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 100 ppm, solvent = n-Octane, 12 W blue LED, under oxygen gas] (Retention time 6.5-7 min)

Figure S34. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 100 ppm, solvent = n-Octane/H₂O (98:2),12 W blue LED, under oxygen gas] (Retention time 6.5-7 min)

Figure S35. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 100 ppm, solvent = *n*-Octane/CH₃CN (98:2),12 W blue LED, under oxygen gas] (Retention time 6.5-7 min)

Figure S36. HPLC Chromatogram [Reaction condition: 20 mg CdS@NH₂-MIL-125, t = 24 h, T = r.t, DBT = 100 ppm, solvent = CH₃CN /Toluene (98:2), 12 W blue LED, under oxygen gas] (Retention time 4.5-6 min)

References

1. J. Robertson, T. Bandosz, Photooxidation of dibenzothiophene on TiO₂/hectorite thin films layered catalyst, J. Colloid Interface Sci.,2006, **299.1**, 125-135.