Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

## **Supporting Information**

## N-doped rutile TiO<sub>2</sub> nanorod@g-C<sub>3</sub>N<sub>4</sub> core/shell S-scheme

## heterojunction for boosting photoreduction CO<sub>2</sub> activity

Haohui Gu <sup>a</sup>, Feng Liang <sup>a</sup>, \*, Xiaohan Wang <sup>a</sup>, Shuaibing Wu <sup>a</sup>, Gongye Lv <sup>a</sup>, Haijun Zhang <sup>a</sup>,

Shaowei Zhang <sup>b</sup>, Lilin Lu <sup>c</sup>, Zhijun Dong <sup>c</sup>

a The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and

Technology, Wuhan 430081, China

b College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4

4QF, UK

c The Hubei Province Key Laboratory of Coal Conversion & New Carbon Materials, Wuhan

University of Science and Technology, Wuhan 430081, China

\* Corresponding author. The State Key Laboratory of Refractories and Metallurgy, Wuhan

University of Science and Technology, Wuhan, 430081, China.

E-mail addresses: liangfengref@wust.edu.cn (Feng Liang)



Figure S1. (a) TG curves of NT@CN3, NT@CN5, and NT@CN7. SEM images of

NT@CN7 before (b) and after (c) thermogravimetric analysis.



Figure S2.  $N_2$  adsorption-desorption isotherms (a) and corresponding Barrett-Joyner-

Halenda (BJH) pore-size distribution plots (b) of NT, CN, and NT@CN5 samples.



Figure S3. XPS survey spectra of CN, NT, and NT@CN5.



Figure S4. XRD patterns of as-prepared NT@CN5 before and after reaction.



Figure S5. SEM images of as-prepared NT@CN5 before (a) and after (b) reaction.

| Photocatalyst                                                                   | <b>Reaction conditions</b>                                                                     | Reaction<br>time (h) | CO Production<br>(µmol g <sup>-1</sup> h <sup>-1</sup> ) | Reference |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------|-----------|
| A-TiO <sub>2</sub> /R-TiO <sub>2</sub><br>(Anatase and<br>Rutile)               | 300 W Hg-Xe,<br>liquid phase (0.1 M KHCO <sub>3</sub><br>aqueous solution), 100 mg<br>catalyst | 5                    | 1.39                                                     | S1        |
| TiO <sub>2</sub> /g-C <sub>3</sub> N <sub>4</sub><br>nanosheet<br>(Anatase)     | 150 W Xe, $\lambda$ >325 nm, gas phase, 25 mg catalyst                                         | 6                    | 2.04                                                     | S2        |
| $TiO_2$ nanosheets-<br>$\{001\}$<br>(Anatase)                                   | 2x18W Hg, λ=245 nm,<br>liquid phase (2 M NaOH aqueous<br>solution), 300 mg catalyst            | 5                    | 0.12                                                     | S3        |
| TiO <sub>2</sub> -CoO <sub>x</sub><br>(Anatase)                                 | 150 W UV, λ=365 nm,<br>gas phase, 50 mg catalyst, 120 °C                                       | 5                    | 1.24                                                     | S4        |
| Au/TiO <sub>2</sub><br>(Anatase)                                                | 300 W Xe, λ=320-780nm,<br>gas phase                                                            | 6                    | 0.3                                                      | S5        |
| AuPd <sub>3</sub> /TiO <sub>2</sub><br>(Anatase)                                | 300 W Xe, λ=320-780nm,<br>gas phase                                                            | 6                    | 2.6                                                      | S5        |
| Pd/TiO <sub>2</sub><br>(Anatase)                                                | 300 W Xe, λ=320-780nm,<br>gas phase                                                            | 6                    | 3.9                                                      | S5        |
| $g-C_3N_4/TiO_2-$<br>{210} cubes<br>(Brookite)                                  | 300 W Xe, $\lambda$ =320-780nm, gas phase, 60 mg catalyst                                      | 2                    | 1.27                                                     | S6        |
| I/TiO <sub>2</sub> -{001}<br>(Anatase)                                          | 500 W Xe, λ=320-780nm,<br>gas phase, 0.3 g catalyst                                            | 6                    | 3.43                                                     | S7        |
| TiO <sub>2</sub><br>(P25)                                                       | 300 W Xe, λ=320-780nm, gas phase, 100 mg catalyst                                              | 5                    | 1.84                                                     | S8        |
| PdS QD-Cu/TiO <sub>2</sub>                                                      | 300 W Xe, λ=320-780nm,<br>gas phase                                                            | 6                    | 0.82                                                     | S9        |
| I doped TiO <sub>2</sub>                                                        | 450 W Xe, $\lambda$ =320-780nm, gas phase, 200 mg catalyst                                     | 3                    | 2.4                                                      | S10       |
| N-doped rutile<br>TiO <sub>2</sub> @g-C <sub>3</sub> N <sub>4</sub><br>(Rutile) | 300 W Xe, $\lambda$ =320-780nm, gas phase, 50 mg catalyst, 80 kPa,                             | 5                    | 6.67                                                     | this work |

reported data for other photocatalysts.

| model of the PL decay curves. |       |               |       |               |                             |  |  |
|-------------------------------|-------|---------------|-------|---------------|-----------------------------|--|--|
| Sample                        | $A_1$ | $\tau_1$ (ns) | $A_2$ | $\tau_2$ (ns) | $\tau_{ave}\left(ns\right)$ |  |  |
| NT                            | 11.02 | 1.95          | 0.41  | 7.99          | 6.36                        |  |  |
| CN                            | 6.76  | 2.33          | 0.44  | 11.71         | 11.36                       |  |  |
| NT@CN5                        | 6.62  | 2.2           | 0.31  | 15.32         | 14.28                       |  |  |

Table S2. Decay parameters and average lifetime according to a biexponential fitting

## References

- [S1] Akrami S, Watanabe M, Ling TH, et al. High-pressure TiO<sub>2</sub>-II polymorph as an active photocatalyst for CO<sub>2</sub> to CO conversion, Appl. Catal. B. 298 (2021) 120566.
- [S2] Crake A, Christoforidis KC, Godin R, et al. Titanium dioxide/carbon nitride nanosheet nanocomposites for gas phase CO<sub>2</sub> photoreduction under UV-visible irradiation, Appl. Catal. B. 242 (2019) 369-378.
- [S3] He Z, Wen L, Wang D, et al. Photocatalytic reduction of CO<sub>2</sub> in aqueous solution on surface-fluorinated anatase TiO<sub>2</sub> nanosheets with exposed {001} facets, Energy Fuels. 28(6) (2014) 3982-3993.
- [S4] Li Y, Wang C, Song M, et al. TiO<sub>2-x</sub>/CoO<sub>x</sub> photocatalyst sparkles in photothermocatalytic reduction of CO<sub>2</sub> with H<sub>2</sub>O steam, Appl. Catal. B. 243 (2019) 760-770.
- [S5] Jiao J, Wei Y, Zhao Y, et al. AuPd/3DOM-TiO<sub>2</sub> catalysts for photocatalytic reduction of CO<sub>2</sub>: High efficient separation of photogenerated charge carriers, Appl. Catal. B. 209(228-239) (2017) 228.
- [S6] Li K, Peng B, Jin J, et al. Carbon nitride nanodots decorated brookite TiO<sub>2</sub> quasi nanocubes for enhanced activity and selectivity of visible-light-driven CO<sub>2</sub> reduction, Appl. Catal. B. 203 (2017) 910-916.
- [S7] He Z, Yu Y, Wang D, et al. Photocatalytic reduction of carbon dioxide using iodine-doped titanium dioxide with high exposed {001} facets under visible light, RSC Adv. 6(28) (2016) 23134-23140.
- [S8] Wang Y, Chen Y, Zuo Y, et al. Hierarchically mesostructured TiO<sub>2</sub>/graphitic carbon composite as a new efficient photocatalyst for the reduction of CO<sub>2</sub> under simulated solar irradiation, Catal. Sci. Technol. 3(12) (2013) 3286-3291.
- [S9] Wang C, Thompson RL, Ohodnicki P, et al. Size-dependent photocatalytic reduction of CO<sub>2</sub> with PbS quantum dot sensitized TiO<sub>2</sub> heterostructured photocatalysts, J. Mater. Chem. 21(35) (2011) 13452-13457.
- [S10] Zhang Q, Li Y, Ackerman EA, et al. Visible light responsive iodine-doped TiO<sub>2</sub> for photocatalytic reduction of CO<sub>2</sub> to fuels, Appl. Catal. A-Gen. 400(1-2) (2011) 195-202.