Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Active Sites, Kinetics, and Inhibiting Species in the Catalytic Dehydration of Methanol

over MIL-100(Cr)

Mengying Li, Jiakang Chen, Jacklyn N. Hall, Praveen Bollini*

William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA

*Corresponding author. E-mails: ppbollini@.uh.edu

Table of Contents

S.1. Characterization results	3
S.2. In-situ titration with 2,6 DTBP over MIL-100(Cr)	4
S.3. Assessment of transport limitations	5
S.4. Derivation of plausible methanol dehydration rate expressions	7
S.5. Dependence of DME formation rate on DME and water partial pressure	13
S.6. Evolution of Brønsted acid site intensity after flowing 0.1 – 2 kPa methanol	14
S.7. Parity Plots	15
S.8. Dependence of DME formation rates on contact time	16
S.9. Evolution of methanol monomer coverage after dosing 1 ^µ L methanol	17

S.1. Characterization results

Figure S1. (A) X-ray diffraction pattern (B) TGA profile (C) N₂ physisorption isotherm for MIL-100(Cr)

S.2. In-situ titration with 2,6 DTBP over MIL-100(Cr)

Figure S2. DME formation rate as a function of time during in-situ titration with 2,6 DTBP. Reaction conditions: 493 K, 26 Pa 2,6 DTBP, 0.4 kPa methanol, 0.013 mol methanol (mol Cr)⁻¹ s⁻¹.

S.3. Assessment of transport limitations

Table S1. Summary of criteria used for assessing internal and external mass and heat transfer, as well as the formation of hot spots. All values are estimated at a temperature of 493 K and contact time of 5.28 s.

	Criterion	Upper limit	Highest value
Internal mass transfer	Weisz-Prater ¹	$\frac{-r_A^{'}\rho_c R^2}{D_{eff} C_{AS}} \ll 1$	0.0018
External mass transfer	Mears ²	$\frac{-r_A^{'}\rho_b Rn}{K_c C_{As}} < 0.15$	1.54 × 10 ⁻⁹
Internal heat transfer	Anderson ³	$\frac{ \Delta H_R r_A \rho_c R^2 E_a}{k_{eff} T^2 R_g} < 0.75$	1.09 × 10 ⁻⁵
External heat transfer	Mears ^{4,5}	$\frac{ \Delta H_R r_A^{'} \rho_b R E_a}{h T^2 R_g} < 0.15$	1.52 × 10 ⁻¹⁰
Hot spot formation	Balakotaiah ⁶	$\frac{\tau_h}{\tau_g} = \frac{E_a \Delta T_{ad}}{RT_f T_f} k(T_f) \tau_h < 0.368$	2.84 × 10 ⁻⁶
Radial temperature gradient	Mears ²	$\frac{E_a \Delta T_{ad} k(T_f) D_t^2}{RT_f \ T_f \ k_{eff}/C_{pv}(T_f)} < 1$	0.0056

Nomenclature:

- r'_A : observed reaction rate mol/(s * g)
- ρ_c : catalyst particle density, g/m^3
- R: particle radius, m
- D_{eff} : effective diffusion coefficient, m^2/s

 C_{AS} : reactant concentration at the surface of the pellet mol/m^3

 ρ_b : catalyst bulk density, g/m^3

n : reaction order K_c : external mass transfer coefficient

 K_c : external mass transfer coefficient

 ΔH_R : heat of reaction *J*/*mol*

 E_a : activation energy, *J/mol*

 k_{eff} : effective catalyst thermal conductivity, W/(m * K)

T: catalyst surface temperature, K

 R_g : ideal gas constant, J/(mol * K)

h : heat transfer coefficient, $kW/(m^2 * K)$

 $k(T_f)$: rate constant, s^{-1}

 T_f : furnace temperature, K

 ΔT_{ad} : adiabatic temperature rise, K

 D_t : tube diameter, m

 C_{pv} : volumetric specific heat capacity of the gas mixture, $J/(m^3 * K)$

 τ_g : characteristic heat generation times, *s*

 τ_h : characteristic heat removal times, *s*

S.4. Derivation of plausible methanol dehydration rate expressions

S.4.1 Kinetically-relevant methoxy formation in the dissociative scheme $CH_3OH + H^+ \leftrightarrow CH_3OH_2^+$ $CH_3OH_2^+ \rightarrow CH_3^+ + H_2O$ $CH_3^+ + CH_3OH \leftrightarrow DME - H^+$ $DME - H^+ \leftrightarrow DME + H^+$

Assuming the formation of surface methoxy groups through the dehydration of methanol monomers is the rate determining step, and all the other steps are quasi-equilibrated, the rate expression can be written as: $r_{\text{expression}} = k_{\text{exp}} \left[CH_{\text{e}} OH_{\text{e}}^{\pm} \right]$

$$\frac{r_{DME}}{[L]} = \frac{k_{Me} [CH_3 OH_2]}{[L]}$$
(S1a)

where k_{Me} is the rate constant for the dehydration of methanol monomers. The total number of active sites (L) can be expressed as follows:

$$[L] = [H^+] + [CH_3OH_2^+] + [CH_3^+] + [DME - H^+]$$
(S1b)

The concentration of surface intermediates can be expressed as:

$$\left[CH_3OH_2^+\right] = K_M \left[CH_3OH\right] \left[H^+\right] \tag{S1c}$$

$$\left[DME - H^{+}\right] = K_{DME}[DME][H^{+}] \tag{S1d}$$

$$\left[CH_{3}^{+}\right] = \frac{K_{DME}[DME][H^{+}]}{K_{MMe}[CH_{3}OH]}$$
(S1e)

where K_M , K_{MMe} and $1/K_{DME}$ are equilibrium constants for the formation of methanol monomers, the formation of surface methoxies, and the desorption of DME.

Substituting Eq. S1b - e into Eq. S1a gives the resulting rate expression for DME formation:

$$\frac{r_{DME}}{[H^+]} = \frac{k_{Me}K_M[CH_3OH]}{1 + K_M[CH_3OH] + \frac{K_{DME}[DME]}{K_{MMe}[CH_3OH]} + K_{DME}[DME]}$$
(S1f)

S.4.2 Kinetically-relevant methoxy formation in the dissociative scheme with water monomers and water dimers as inhibitory species K_{i}

$$CH_{3}OH + H^{+} \stackrel{K_{M}}{\leftrightarrow} CH_{3}OH_{2}^{+}$$

$$CH_{3}OH_{2}^{+} \stackrel{K_{Me}}{\rightarrow} CH_{3}^{+} + H_{2}O$$

$$CH_{3}^{+} + CH_{3}OH \stackrel{K_{MMe}}{\leftrightarrow} DME - H^{+}$$

$$DME - H^{+} \stackrel{1/K_{DME}}{\leftrightarrow} DME + H^{+}$$

$$H_{2}O + H^{+} \stackrel{K_{W1}}{\leftrightarrow} H_{3}O^{+}$$

$$H_{2}O + H_{3}O^{+} \stackrel{K_{W2}}{\leftrightarrow} H_{2}O - H_{3}O^{+}$$

Assuming the formation of surface methoxies through the dehydration of methanol monomers is the rate determining step, and all other steps are quasi-equilibrated, the rate expression can be written as:

$$\frac{r_{DME}}{[L]} = \frac{k_{Me} \left[CH_3 OH_2^+\right]}{[L]}$$
(S2a)

where k_{Me} is the rate constant for the dehydration of methanol monomers. The total number of active sites (L) can be expressed as following:

$$[L] = [H^+] + [CH_3OH_2^+] + [CH_3^+] + [DME - H^+] + [H_3O^+] + [H_2O - H_3O]^+$$
(S2b)

Concentrations of surface intermediates can be expressed as:

$$\begin{bmatrix} CH_{3}OH_{2}^{+} \end{bmatrix} = K_{M} \begin{bmatrix} CH_{3}OH \end{bmatrix} \begin{bmatrix} H^{+} \end{bmatrix}$$
(S2c)
$$\begin{bmatrix} DME - H^{+} \end{bmatrix} = K_{DME} \begin{bmatrix} DME \end{bmatrix} \begin{bmatrix} H^{+} \end{bmatrix}$$
(S2d)

$$\left[CH_{3}^{+}\right] = \frac{K_{DME}[DME][H^{+}]}{K_{MMe}[CH_{3}OH]}$$
(S2e)

$$\begin{bmatrix} H_3 O^+ \end{bmatrix} = K_{W1} \begin{bmatrix} H_2 O \end{bmatrix} \begin{bmatrix} H^+ \end{bmatrix}$$
(S2f)
$$\begin{bmatrix} H_2 O - H_3 O^+ \end{bmatrix} = K_{W1} K_{W2} \begin{bmatrix} H_2 O \end{bmatrix}^2 \begin{bmatrix} H^+ \end{bmatrix}$$
(S2g)

where K_M , K_{MMe} , $1/K_{DME}$, K_{W1} , and K_{W2} are the equilibrium constants for the formation of methanol monomers, the formation of surface methoxies, the desorption of DME, and the formation of water monomers and water dimers.

Substituting Eq. S2b - g into Eq. S2a gives the resulting rate expression for DME formation:

$$\frac{r_{DME}}{[H^+]} = \frac{k_{Me}K_M[CH_3OH]}{1 + K_M[CH_3OH] + \frac{K_{DME}[DME]}{K_{MMe}[CH_3OH]} + K_{DME}[DME] + K_{W1}[H_2O] + K_{W1}K_{W2}[H_2O]^2}$$
(S2f)

S.4.3 Kinetically-relevant dehydration of methanol dimers in the associative scheme

$$CH_3OH + H^+ \stackrel{K_M}{\leftrightarrow} CH_3OH_2^+$$

 $CH_3OH_2^+ + CH_3OH \leftrightarrow CH_3OH - CH_3OH_2^+$
 $CH_3OH - CH_3OH_2^+ \stackrel{k_{DME}}{\rightarrow} DME - H^+ + H_2O$
 $DME - H^+ \stackrel{1/K_1}{\leftrightarrow} DME + H^+$

Assume the decomposition of methanol dimers is rate determining, and all other steps are quasiequilibrated, the rate expression can be written as:

$$\frac{r_{DME}}{[L]} = \frac{k_{DME} \left[CH_3 OH - CH_3 OH \frac{+}{2} \right]}{[L]}$$
(S3a)

where k_{DME} is the rate constant for decomposition of the methanol dimer. The total number of active sites (L) can be expressed as following:

$$[L] = [H^+] + [CH_3OH_2^+] + [CH_3OH - CH_3OH_2^+] + [DME - H^+]$$
(S3b)

Concentrations of surface intermediates can be expressed as:

$$\begin{bmatrix} CH_{3}OH_{2}^{+} \end{bmatrix} = K_{M} \begin{bmatrix} CH_{3}OH \end{bmatrix} \begin{bmatrix} H^{+} \end{bmatrix}$$
(S3c)
$$\begin{bmatrix} CH_{3}OH - CH_{3}OH_{2}^{+} \end{bmatrix} = K_{D} K_{M} \begin{bmatrix} CH_{3}OH \end{bmatrix}^{2} \begin{bmatrix} H^{+} \end{bmatrix}$$
(S3d)
$$\begin{bmatrix} DME - H^{+} \end{bmatrix} = K_{1} \begin{bmatrix} DME \end{bmatrix} \begin{bmatrix} H^{+} \end{bmatrix}$$
(S3e)

where K_{M} , K_{D} and $1/K_{1}$ are the equilibrium constants for the formation of methanol monomers, methanol dimers, and the desorption of DME.

The rate expression can be written as:

$$\frac{r_{DME}}{[H^+]} = \frac{k_{DME} K_M K_D [CH_3 OH]^2}{1 + K_M [CH_3 OH] + K_M K_D [CH_3 OH]^2 + K_1 [DME]}$$
(S3f)

S.4.4 Kinetically-relevant dehydration of methanol dimers in the associative scheme with water monomers and water dimers as inhibitory species. K_{M}

$$CH_{3}OH + H^{+} \stackrel{m}{\leftrightarrow} CH_{3}OH \stackrel{+}{_{2}} CH_{3}OH \stackrel{+}{_{2}} CH_{3}OH \stackrel{+}{_{2}} CH_{3}OH \stackrel{+}{_{2}} CH_{3}OH - CH_{3}OH \stackrel{+}{_{2}} \stackrel{k_{DME}}{\xrightarrow{}} DME - H^{+} + H_{2}O$$

$$DME - H^{+} \stackrel{K_{W1}}{\xrightarrow{}} DME + H^{+}$$

$$H_{2}O + H^{+} \stackrel{K_{W2}}{\leftrightarrow} H_{3}O \stackrel{+}{\xrightarrow{}} H_{2}O - H_{3}O^{+}$$

Assuming the decomposition of methanol dimers is rate determining, and all other steps are quasi-equilibrated, the rate expression can be written as:

$$\frac{r_{DME}}{[L]} = \frac{k_{DME} \left[CH_3 OH - CH_3 OH \frac{1}{2} \right]}{[L]}$$
(S4a)

where k_{DME} is the rate constant for decomposition of the methanol dimer. The total number of active sites (L) can be expressed as following:

$$[L] = [H^+] + [CH_3OH_2^+] + [CH_3OH - CH_3OH_2^+] + [DME - H^+] + [H_3O]^+ + [H_2O - H_3O]^+$$
(S4b)

Concentrations of surface intermediates can be expressed as:

$$\begin{bmatrix} CH_{3}OH_{2}^{+} \end{bmatrix} = K_{M}[CH_{3}OH][H^{+}]$$
(S4c)
$$\begin{bmatrix} CH_{3}OH - CH_{3}OH_{2}^{+} \end{bmatrix} = K_{D}K_{M}[CH_{3}OH]^{2}[H^{+}]$$
(S4d)
$$\begin{bmatrix} DME - H^{+} \end{bmatrix} = K_{1}[DME][H^{+}]$$
(S4e)
$$\begin{bmatrix} H_{3}O^{+} \end{bmatrix} = K_{W1}[H_{2}O][H^{+}]$$
(S4f)
$$\begin{bmatrix} H_{2}O - H_{3}O^{+} \end{bmatrix} = K_{W1}K_{W2}[H_{2}O]^{2}[H^{+}]$$
(S4g)

where K_M , K_D , $1/K_1$, K_{W1} , and K_{W2} are the equilibrium constants for the formation of methanol monomers, methanol dimers, the desorption of DME, the formation of water monomers, and the formation of water dimers.

The rate expression can be written as:

$$\frac{r_{DME}}{[H^+]} = \frac{k_{DME} K_M K_D [CH_3 OH]^2}{1 + K_M [CH_3 OH] + K_M K_D [CH_3 OH]^2 + K_1 [DME] + K_{W1} [H_2 O] + K_{W1} K_{W2} [H_2 O]^2}$$
(S4f)

S.4.5 Kinetically-relevant dehydration of methanol dimers with methanol monomers, methanol dimers and methanol-water dimers as MASIs. K_{M}

$$CH_{3}OH + H^{+} \stackrel{K_{M}}{\leftrightarrow} CH_{3}OH_{2}^{+}$$

$$CH_{3}OH_{2}^{+} + CH_{3}OH \stackrel{K_{D}}{\leftrightarrow} CH_{3}OH - CH_{3}OH_{2}^{+}$$

$$CH_{3}OH - CH_{3}OH_{2}^{+} \stackrel{K_{DME}}{\rightarrow} DME - H^{+} + H_{2}O$$

$$DME - H^{+} \stackrel{K_{M1}}{\leftrightarrow} DME + H^{+}$$

$$H_{2}O + H^{+} \stackrel{K_{W1}}{\leftrightarrow} H_{3}O^{+}$$

$$CH_{3}OH_{2}^{+} + H_{2}O \stackrel{K_{MW1}}{\leftrightarrow} CH_{3}OH - H_{3}O^{+}$$

$$H_{3}O^{+} + CH_{3}OH \stackrel{K_{MW2}}{\leftrightarrow} CH_{3}OH - H_{3}O^{+}$$

Assuming the decomposition of methanol dimers is rate determining, including water monomers and water-methanol dimers as possible inhibitory species, and assuming all other steps are quasi-equilibrated, the rate expression can be written as:

$$\frac{r_{DME}}{[L]} = \frac{k_{DME} \left[CH_3 OH - CH_3 OH \frac{1}{2} \right]}{[L]}$$
(S5a)

where k_{DME} is the rate constant for the decomposition of a methanol dimer to DME.

$$[L] = [H^+] + [CH_3OH_2^+] + [CH_3OH - CH_3OH_2^+] + [DME - H^+] + [CH_3OH - H_3O^+] + (S5b)$$

(S5e)

Concentrations of surface intermediates can be expressed as:

$$\begin{bmatrix} CH_{3}OH_{2}^{+} \end{bmatrix} = K_{M} \begin{bmatrix} CH_{3}OH \end{bmatrix} \begin{bmatrix} H^{+} \end{bmatrix}$$
(S5c)
$$\begin{bmatrix} CH_{3}OH - CH_{3}OH_{2}^{+} \end{bmatrix} = K_{D} K_{M} \begin{bmatrix} CH_{3}OH \end{bmatrix}^{2} \begin{bmatrix} H^{+} \end{bmatrix}$$
(S5d)
$$\begin{bmatrix} DME - H^{+} \end{bmatrix} = K_{1} \begin{bmatrix} DME \end{bmatrix} \begin{bmatrix} H^{+} \end{bmatrix}$$

$$\begin{bmatrix} H_3 O^+ \end{bmatrix} = K_{W1} \begin{bmatrix} H_2 O \end{bmatrix} \begin{bmatrix} H^+ \end{bmatrix}$$
(S5f)
$$\begin{bmatrix} CH_3 OH - H_3 O^+ \end{bmatrix} = (K_{MW2} K_{W1} + K_{MW1} K_M) \begin{bmatrix} CH_3 OH \end{bmatrix} \begin{bmatrix} H_2 O \end{bmatrix} \begin{bmatrix} H^+ \end{bmatrix}$$
(S5g)

The rate expression can be written as:

$$\frac{r_{DME}}{[H^+]} = \frac{k_{DME} K_M K_D [CH_3 OH]^2}{1 + K_M [CH_3 OH] + K_M K_D [CH_3 OH]^2 + K_{W1} [H_2 O] + K' [CH_3 OH] [H_2 O] + K_1 [DME])}$$

where $K' = (K_{MW2} K_{W1} + K_{MW1} K_M)$ (S5h)

Assuming that methanol monomers, methanol dimers, and water-methanol dimers are abundant intermediates, Eq. S5h can be simplified to:

$$\frac{r_{DME}}{[H^+]} = \frac{k_{DME}K_DK_M[CH_3OH]^2}{K_M[CH_3OH] + K_DK_M[CH_3OH]^2 + K'[CH_3OH][H_2O]}$$
(S5i)

S.5. Dependence of DME formation rate on DME and water partial pressure

Figure S3. Reaction rates measured at 493 K with 1) 0.4 kPa methanol, 2) 0.4 kPa methanol and 0.17 kPa DME cofeed, and 3) 0.4 kPa methanol and 0.25 kPa water cofeed. 7.3 - 7.6×10^{-4} mol methanol (mol Cr)⁻¹ s⁻¹.

S.6. Evolution of Brønsted acid site intensity after flowing 0.1 – 2 kPa methanol

Figure S4. In-situ infrared spectra in the presence of 0.1 - 2 kPa methanol at 493 K compared to the reference spectrum collected prior to the introduction of methanol.

Figure S5. Parity plots comparing kinetic model predictions against measured DME formation rates at (A) 478 K, (B) 493 K, and (C) 508 K. Dashed lines represent \pm 20% deviation.

S.8. Dependence of DME formation rates on contact time

Figure S6. DME formation rates at 0.4 kPa methanol partial pressure and 0, 0.5, and 2.5 kPa water co-feed at 493 K. 5.7×10^{-3} - 1.4×10^{-1} mol methanol (mol Cr)⁻¹ s⁻¹.

S.9. Evolution of methanol monomer coverage after dosing 1 μ L methanol

Figure S7. Accumulation of methanol monomers (C-O stretch of hydrogen-bonded methanol at 990 cm^{-1})⁷ on the surface as a function of time.

References

- 1 P. B. Weisz and J. S. Hicks, *Chem. Eng. Sci.*, 1995, **50**, 3951–3958.
- 2 D. E. Mears, J. Catal., 1971, 20, 127–131.
- 3 D. E. Mears, *Ind. Eng. Chem. Process Des. Dev.*, 2002, **10**, 541–547.
- 4 N. Wakao and T. Funazkri, *Chem. Eng. Sci.*, 1978, **33**, 1375–1384.
- 5 D. E. Mears, Ind. Eng. Chem. Process Des. Dev., 2002, 10, 541–547.
- 6 V. Balakotaiah, D. Kodra and D. Nguyen, *Chem. Eng. Sci.*, 1995, **50**, 1149–1171.
- 7 S. K. Matam, S. A. F. Nastase, A. J. Logsdail and C. R. A. Catlow, *Chem. Sci.* 2020, **11**, 6805-6814.