Mechanistic Insight into Low Temperature SCR by Ceria-Manganese Mixed Oxide Phases Incorporated into Zeolites

Supporting Information

Nicholas C. Nelson¹, Tahrizi Andana¹, Kenneth G. Rappé^{*,1}, Yong Wang^{1,2}

¹Energy & Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA

²The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA

*Corresponding author e-mail: ken.rappe@pnnl.gov

Sample –	BET surface area (m ² g ⁻¹)		Pore volume (cm ³ g ⁻¹)	
	Total	Micropore	Total	Micropore
H-SSZ-13	729	667	0.30	0.25
Ce _{0.7} Mn _{0.3} O _x /H-SSZ-13	552	509	0.28	0.19
$Ce_{0.7}Mn_{0.3}O_{x}$	28	n/a	0.54	n/a

Table S1. Textural properties obtained through N₂ physisorption

Figure S1. Experimental XRD pattern of H-SSZ-13 (top) and Ce_{0.7}Mn_{0.3}O_x/H-SSZ-13 (bottom).

Figure S2. N₂ yield as a function of temperature during NH₃-SCR over Ce_xMn_{1-x}O_y/H-SSZ-13 composite catalyst. Reaction conditions: [NO] = 325 ppm; [NO₂] = 6 ppm; [NH₃] = 330 ppm; [O₂] = 15 %; [N₂] = balance; flow rate = 1.5 SLM; GHSV = 1.7e+6 h⁻¹.

Figure S3. NO and NO₂ concentration profile at the reactor outlet over (a) CeO₂/H-SSZ-13, (b) Ce_{0.7}Mn_{0.3}O_y/H-SSZ-13, (c) Ce_{0.5}Mn_{0.5}O_y/H-SSZ-13 during NO oxidation with pre-adsorbed NH₃. Reaction conditions: [NO] = 325 ppm; [NO₂] = 6 ppm; [O₂] = 15 %; [N₂] = balance; F = 1.5 SLM; GHSV = 1.7e+6 h⁻¹.

Figure S4. NO oxidation activity over bulk $Ce_{0.7}Mn_{0.3}O_y$ with pre-adsorbed NH₃. No curvature change is observed, unlike the mixed oxide supported on zeolite. Reaction conditions: [NO] = 325 ppm; [NO₂] = 6 ppm; [O₂] = 15 %; [N₂] = balance; F = 1.5 SLM; GHSV = 4.6e+6 h⁻¹.

Figure S5. DRIFTS recorded during exposure of $Ce_{0.7}Mn_{0.3}O_x$ bulk oxide to a.) NO and b.) NO + O₂ at 150 °C. The catalyst was pre-treated with 2% O₂ at 500 °C for 15 min, followed by He purge for 45 min at 500 °C prior to each measurement. Conditions: [NO] = 350 ppm; [O₂] = 2%; F = 100 mL min⁻¹. For (a), the bands

at 1163 cm⁻¹ and 1305 cm⁻¹ were attributed to symmetric nitrites. The band at 1102 cm⁻¹ was attributed to hyponitrites. ¹

Figure S6. Ammonium nitrate decomposition products observed during heating in N₂ over bulk oxide catalysts. The shaded areas represent the integrated areas used in Figure 3a. The NO evolved in (a-c) is a thermodynamic effect derived from NO₂ dissociation to NO and O₂. For (a), the temperature that NO₂ evolved likely reflects the ability of the ceria surface to store NO_x as opposed to the temperature at which ammonium nitrate decomposes.² From panel (a) we assume that in the absence of NO_x storage, the NO₂ desorption leading edge would have been around 175 °C, about 40-50 °C higher than for the Mn-based catalysts. Conditions: [NH₄NO₃] = 15 wt. %; $\beta = 10$ °C min⁻¹; F = 1 SLM.

Figure S7. a.) Light-off profile obtained by flowing NH₃ over bulk Ce_{0.7}Mn_{0.3}O_y. Conditions: [NH₃] = 200 ppm; [N₂] = balance; β = 5 °C min⁻¹; F = 1 SLM. b.) NH₃ temperature programmed desorption (TPD) over bulk Ce_{0.7}Mn_{0.3}O_y. The catalyst was heated to 500 °C in 15 % O₂ for 0.5 h, followed by cooling under He, admittance of 350 ppm NH₃ for 0.5 h at 50 °C, and heating at 10 °C min⁻¹ under 1 SLM N₂. c.) DRIFTS recorded during exposure of bulk Ce_{0.7}Mn_{0.3}O_x to NH₃ at 150 °C in the 1800-800 cm⁻¹ region. The bands at 1159 cm⁻¹ and 1597 cm⁻¹ were attributed, in part, to NH₃ adsorbed at Lewis acid.³ The other labelled bands were attributed to NO_x species. The shoulder at 1101 cm⁻¹ suggests the presence of hyponitrite.¹ d.) DRIFTS recorded during exposure of bulk Ce_{0.7}Mn_{0.3}O_x to NH₃ at 150 °C in the 3730-2750 cm⁻¹ region. The bands spanning 3350-3250 cm⁻¹ are attributed to adsorbed NH₃.

Figure S8. Temperature programmed surface reaction between NO and NH₄NO₃ over bulk oxide catalysts. The shaded areas represent the integrated areas used in Figure 3b. Conditions: [NH₄NO₃] = 15 wt. %; [NO] = 325 ppm; β = 10 °C min⁻¹; F = 1 SLM.

Figure S9. Temperature programmed surface reaction between NO and NH₄NO₃ over zeolite-supported mixed oxide catalysts. The shaded areas represent the integrated areas used in for the histogram in (d). Conditions: [NH₄NO₃] = 15 wt. %; [NO] = 325 ppm; β = 10 °C min⁻¹; F = 1 SLM.

Figure S10. NH₃ temperature programmed desorption (TPD) over a.) bulk Ce_{0.7}Mn_{0.3}O_y and b.) Ce_{0.7}Mn_{0.3}O_y/SSZ-13. Both catalysts were heated to 500 °C in 15 % O₂ for 0.5 h, followed by cooling under He, admittance of 350 ppm NH₃ for 0.5 h at 50 °C, and heating at 10 °C min⁻¹ under 1 SLM N₂.

References:

1. Mihaylov, M. Y.; Ivanova, E. Z.; Vayssilov, G. N.; Hadjiivanov, K. I., Revisiting ceria-NOx interaction: FTIR studies. *Catal. Today* **2020**, *357*, 613-620.

2. Kim, Y.; Hwang, S.; Lee, J.; Ryou, Y.; Lee, H.; Kim, C. H.; Kim, D. H., Comparison of NO_x Adsorption/Desorption Behaviors over Pd/CeO₂ and Pd/SSZ-13 as Passive NO_x Adsorbers for Cold Start Application. *Emission Contr. Sci. Technol.* **2019**, *5*, 172-182.

3. Zhang, L.; Pierce, J.; Leung, V. L.; Wang, D.; Epling, W. S., Characterization of Ceria's Interaction with NO_x and NH₃. *J. Phys. Chem. C* **2013**, *117*, 8282-8289.