Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Visible-light driven H₂ evolution coupled with furfuryl alcohol selective

oxidation over Ru atom decorated Zn_{0.5}Cd_{0.5}S nanorods

Fan Yang, Shengqiang Liu, Ting Tang, Shuang Yao, and Changhua An*

Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China

* Corresponding Author

E-mail: anchua@ustc.edu.

Figures

Fig. S1. XRD patterns of ZnS, CdS, and $Zn_{0.5}Cd_{0.5}S$ synthesized using different

dosages of thiourea.

Fig. S2. (a-d) SEM images of Zn_{0.5}Cd_{0.5}S synthesized using 4 (a), 6 (b), 8 (c), and 10 (d) mmol thiourea.

Fig. S3. Photocatalytic H₂ evolution performance of Zn_{0.5}Cd_{0.5}S synthesized using 4, 6, 8, and 10 mmol thiourea. Light source: 300 W Xeon lamp equipped with a UV cutoff filter; reaction solution: 60 mL of Na₂S/Na₂SO₃ solution (0.25 M/0.35 M), 20 mg catalyst.

Fig. S4. UV-vis absorption spectra of ZCS and 1 wt% Ru/ZCS.

Fig. S5. Wavelength dependent AQY of photocatalytic H_2 production over 1 wt% Ru/ZCS.

Fig. S6. (a) Time course of H_2 evolution over 24 h irradiation, (b) XRD pattern, (c, d) SEM images of 1 wt% Ru/Zn_{0.5}Cd_{0.5}S after the photocatalytic reaction.

Fig. S7. Time course of photocatalytic H_2 evolution over 1 wt% Ru/Zn_{0.5}Cd_{0.5}S in the presence of furfuryl alcohol and TMPO.

Fig. S8. EPR spectra of 1 wt% $Ru/Zn_{0.5}Cd_{0.5}S$ using DMPO as the spin-trapping agent.

Fig. S9. Relative performance of the oxidation of furfuryl alcohol to furfural over 1 wt% $Ru/Zn_{0.5}Cd_{0.5}S$ with and without EDTA as a hole scavenger.

Photocatalyst	Reactant	Alcohol	Light	Activit	Oxidation	Ref.
	weight		source	y (µmol h ⁻¹)	product and selectivity	
Ti ₃ C ₂ T _x /CdS	10 mg	Furfuryl	300 W Xe	1.9	Furfural	[S1]
		alcohol	lamp		93%	
Ti ₃ C ₂ T _x /CdS	10 mg	Furfuryl	3 W blue	6.1	Furfural	[S2]
		alcohol	LED		N/A	
MoS ₂ /ZnIn ₂ S	5 mg	Furfuryl	300 W Xe	14.7	Furfural	[S3]
4		alcohol	lamp		N/A	
NiS/ZnIn ₂ S ₄	5 mg	Furfuryl	300 W Xe	12.5	Furfural	[83]
	C	alcohol	lamp		N/A	
WS ₂ /ZnIn ₂ S ₄	5 mg	Furfuryl	300 W Xe	13.0	Furfural	[S3]
		alcohol	lamp		N/A	
Ni/CdS	10 mg	Furfuryl	450 nm	20.3	Furfural	[S4]
		alcohol	LED		>99%	
			lamp			
$Zn_{0.5}Cd_{0.5}S-P$	1 mg	5-	White	0.8	2,5-	[S5]
		hydroxymet	LED light		diformylfura	
		hylfurfural			n	
					65%	
Co ₉ S ₈ /CdS	1 mg	Benzyl-	450 nm	4.3	Benzaldehyd	[S6]
		alcohol	LED		e	
			Lamp		>99%	
Co ₉ S ₈ /CdS	1 mg	Benzyl-	300 W Xe	10.3	Benzaldehyd	[S6]
		alcohol	lamp		e	
					>99%	
CdS/MIL-	5 mg	Benzyl-	300 W Xe	11.67	Benzaldehyd	[S7]
53(Fe)		alcohol	lamp		e	
					99%	5003
$Pt/g-C_3N_4$	10 mg	Benzyl-	300 W Xe	2.55	Benzaldehyd	[S8]
		alcohol	lamp		e	
					90%	
Ru/	20 mg	Furfuryl	300 W Xe	17.4	Furfural	this
Zn _{0.5} Cd _{0.5} S		alcohol	lamp		>99%	work

 Table S1 Comparison of photocatalytic activity of H2 production coupled with alcohol oxidation from literatures.

Table S2. Kinetic analysis of emission decay of ZCS, 1 wt% Au/ZCS, 1 wt% Pt/ZCS,

	Decay life time (ns)			Fractional			Average
Samples				contribution			lifetime
	τ_1	τ_2	τ_3	\mathbf{f}_1	f_2	f_3	(ns)
ZCS	0.416	2.0	18.0	2.0	9.7	88.3	4.50
1 wt% Au/ZCS	0.414	1.90	12.0	2.8	13.2	84.0	2.20
1 wt% Pt/ZCS	0.334	1.20	6.60	4.2	14.7	81.1	1.90
1 wt% Pd/ZCS	0.388	1.50	6.70	4.5	17.5	78.0	1.59
1 wt% Ru/ZCS	0.322	0.83	4.50	5.7	14.7	79.6	1.35

1 wt% Pd/ZCS, and 1 wt% Ru/ZCS.

Supplementary References

[S1] Y.-H. Li, F. Zhang, Y. Chen, J.-Y. Li, Y.-J. Xu, Photoredox-catalyzed biomass intermediate conversion integrated with H_2 production over $Ti_3C_2T_x/CdS$ composites, Green Chem., 2020, 22: 163-169.

[S2] J. Wang, X. Liu, Z. Li, Acceptorless photocatalytic dehydrogenation of furfuryl alcohol (FOL) to furfural (FAL) and furoic acid (FA) over $Ti_3C_2T_x/CdS$ under visible light, Chem. Asian J. 2021.

[S3] C.-L. Tan, M.-Y. Qi, Z.-R. Tang, Y.-J. Xu, Cocatalyst decorated $ZnIn_2S_4$ composites for cooperative alcohol conversion and H₂ evolution, Appl. Catal., B, 2021, 298: 120541.

[S4] G. Han, Y.-H. Jin, R. A. Burgess, N. E. Dickenson, X.-M. Cao, Y. Sun, Visiblelight-driven valorization of biomass intermediates integrated with H₂ production catalyzed by ultrathin Ni/CdS nanosheets, J. Am. Chem. Soc., 2017, 139: 15584-15587.

[S5] H.-F. Ye, R. Shi, X. Yang, W.-F. Fu, Y. Chen, P-doped $Zn_xCd_{1-x}S$ solid solutions as photocatalysts for hydrogen evolution from water splitting coupled with photocatalytic oxidation of 5-hydroxymethylfurfural, Appl. Catal., B, 2018, 233: 70-79.

[S6] M. Liu, L.-Z. Qiao, B.-B. Dong, S. Guo, S. Yao, C. Li, Z.-M. Zhang, T.-B. Lu, Photocatalytic coproduction of H₂ and industrial chemical over MOF-derived direct Z-scheme heterostructure, Appl. Catal., B, 2020, 273: 119066.

[S7] P. Li, X. Yan, S. Gao, R. Cao, Boosting photocatalytic hydrogen production

S-13

coupled with benzyl alcohol oxidation over CdS/metal-organic framework composites, Chem. Eng. J., 2021, 421: 129870.

[S8] F. Li, Y. Wang, J. Du, Y. Zhu, C. Xu, L. Sun, Simultaneous oxidation of alcohols and hydrogen evolution in a hybrid system under visible light irradiation, Appl. Catal., B, 2018, 225: 258-263.