Catalysis Science & Technology

E-Selective Semi-hydrogenation of Alkynes via a Sulfur-radical Mediation

over Cyclodextrin-modified Nickel Nanocatalyst

Yatao Su,^{a, ‡} Xiu Wang,^{a, ‡} Qianwen Lin,^a Qi Shen,^a Shuangwen Xu,^a Liping Fang,^a Xin Wen^{a,*}

^aKey Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials

Science, Hebei University, Baoding 071002, China.

[‡] These authors contributed equally to this work.

* Corresponding author: E-mail address: wenxin767@hotmail.com

Supplementary Materials

Table of contents

Synthesis of CH-SH	S3
Fig. S1 Synthesis of heptakis-(6-mercapto-6-deoxy)-β-cyclodextrin (CD-SH)	S3
Table S1 Screening of ligands for the semi-hydrogenation of DPA	S5
Table S2 Screening of the amount of CD-SH for the semi-hydrogenation of DPA	S5
Table S3 Screening of catalyst precursors for the semi-hydrogenation of DPA	S6
Table S4 Screening of the amount of NiCl ₂ •6H ₂ O for the semi-hydrogenation of DPA	S6
Table S5 Screening of protic solvent for the semi-hydrogenation of DPA	S7
Table S6 Screening of the amount of methanol for the semi-hydrogenation of DPA	S7
Table S7 Screening of solvent for the semi-hydrogenation of DPA	S8
Table S8 Screening of the amount of Mg(OAc) ₂ for the semi-hydrogenation of DPA	S8
Table S9 Screening of the amount of NaBH ₄ for the semi-hydrogenation of DPA	S9
Table S10 Comparison of TOF for the semihydrogenation of DPA with different reported catalysts	S10
Fig. S2 Reusability of CD-SH modified nickel nanocatalyst in the semi-hydrogenation of DPA	S13
Table S11 Effects of thiols on the Z-to-E isomerization of stilbene.	S14
NMR spectra data of products	S15

Synthesis of CH-SH

Fig. S1 Synthesis of heptakis-(6-mercapto-6-deoxy)-β-cyclodextrin (CD-SH).

Heptakis-(6-mercapto-6-deoxy)-β-cyclodextrin (CD-SH) was synthesized in two steps (Fig. S1).

(i) Synthesis of CD-I: β-cyclodextrin (CD) was recrystallized three times in distilled water (12.0 g CD, 24 mL water) and vacuum dried at 120 °C for 24 h. Triphenylphosphine (40.1 g, 153 mmol) and I₂ (40.5 g, 160 mmol) were dissolved in dried DMF (120 mL and 40 mL), respectively. Subsequently, I₂ solution was added dropwise to the triphenylphosphine solution under stirring. CD (10.2 g) was added to the dark brown solution. The mixture was then heated to 70 °C under a nitrogen atmosphere and stirred for 18 hours. After completed, half of the volume of DMF in the reaction system was removed by vacuum distillation. A solution of sodium methoxide (17.0 mg, 90 mL) was slowly added to the concentrated reaction mixture with cooling in an ice bath, and the pH was adjusted to 9 by NaOH aqueous solution (1.0 M). After stirring for another hour, a large amount of yellow solids were produced, and the color of the solution was turned to brick red. When the reaction mixture was poured into a large amount of methanol (400 mL), more precipitate was formed. The yellow solids were separated by filtration, washed with methanol several times until the color of precipitate was white, and dried under vacuum to give white solids (CD-I).

(ii) Synthesis of CD-SH: In a 250-mL three-necked flask with a dropping funnel, CD-I (0.965 g) and thiourea (0.301 g) in DMF (10 mL) was placed under a nitrogen atmosphere. The reaction mixture was raised to 70 °C and stirred for 19 h. Most DMF was removed by vacuum distillation to obtain yellow oily substance. Water (50 mL) and sodium hydroxide (0.26 g) were added and then refluxed for 1 h under a nitrogen atmosphere. The reaction solution was cooled to room temperature and acidified with KHSO₄ solution. The precipitate was separated by filtration, washed with distilled water several times, and dried under vacuum below 35 °C for several days to obtain white solid powder (CD-SH).

Optimization of reaction conditions

Ph	h NiCl ₂ ·6H ₂ O (7 mol%) NaBH ₄ , CD-SH, Mg(OAc) ₂ CH ₃ OH-DMF, Room temperature	Ph + A	+Ph Ph
Entry	Ligand ^a	Conv. (%)	<i>E/Z</i> /alkane (%)
1	α-CD-SH	>99	68/26/6
2	CD-SH	>99	82/7/11
3	γ-CD-SH	>99	65/24/11
4	1-octanethiol	>99	53/47/0
5	1-dodecanethiol	>99	50/48/2
6	1-octadecanethiol	>99	53/43/4

Table S1 Screening of ligands for the semi-hydrogenation of DPA to E-stilbene

Reaction conditions: DPA (1 mmol), NiCl₂·6H₂O (7 mol%), NaBH₄ (4 equiv.), ligand (3 mol%), Mg(OAc)₂ (4 equiv.), CH₃OH (0.35 mL), DMF (8 mL), room temperature, 1 h. ^{*a*} α -CD-SH, CD-SH and γ -CD-SH refer to heptakis-(6-mercapto-6-deoxy)- α -cyclodextrin, heptakis-(6-mercapto-6-deoxy)- β -cyclodextrin and heptakis-(6-mercapto-6-deoxy)- γ -cyclodextrin, respectively.

Ph	$\begin{array}{c} \text{Ph} & \text{NiCl}_2 \cdot 6\text{H}_2\text{O} (7 \text{ mol}\%) \\ & \text{NaBH}_4, \text{CD-SH}, \text{Mg}(\text{OAc})_2 \\ \hline & \text{CH}_3\text{OH-DMF}, \text{Room temperature} \end{array}$	Ph + Ph F	Ph + // Ph Ph
Entry	CD-SH (mol%)	Conv. (%)	<i>E/Z</i> /alkane (%)
1	0	>99	36/54/10
2	1	>99	66/25/9
3	2	>99	78/9/13
4	3	>99	82/7/11
5	4	>99	78/8/14
6	5	>99	77/7/16

Table S2 Screening of the amount of CD-SH for the semi-hydrogenation of DPA to E-stilbene

Reaction conditions: DPA (1 mmol), NiCl₂·6H₂O (7 mol%), NaBH₄ (4 equiv.), CD-SH, Mg(OAc)₂ (4 equiv.),

CH₃OH (0.35 mL), DMF (8 mL), room temperature, 1 h.

Ph	Precursor (7 mol%) NaBH₄, CD-SH, Mg(OAc)₂ CH₃OH-DMF, Room temperature	Ph + Ph Ph Ph	+Ph Ph
Entry	Catalyst precursor	Conv. (%)	<i>E/Z</i> /alkane (%)
1	NiCl ₂	>99	82/7/11
2	Ni(OAc) ₂	>99	80/8/12
3	$Ni(C_5H_7O_2)_2$	>99	76/10/14
4	NiI ₂	>99	42/54/4
5	$Pd(OAc)_2$	39	0/99/1
6	Co(OAc) ₂	>99	24/57/19

Table S3 Screening of catalyst precursors for the semi-hydrogenation of DPA to E-stilbene

Reaction conditions: DPA (1 mmol), catalyst precursor (7 mol%), NaBH₄ (4 equiv.), CD-SH (3 mol%), Mg(OAc)₂ (4 equiv.), CH₃OH (0.35 mL), DMF (8 mL), room temperature, 1 h.

Table S4 Screening of the amount	of NiCl ₂ ·6H ₂ O for the ser	mi-hydrogenation of	f DPA to <i>E</i> -stilbene
----------------------------------	---	---------------------	-----------------------------

Ph	$\begin{array}{c} NiCl_2 \cdot 6H_2O \ (x \ mol\%) \\ NaBH_4, \ CD \cdot SH, \ Mg(OAc)_2 \\ CH_3OH \cdot DMF, \ Room \ temperature \end{array}$	Ph + Ph	Ph + Ph Ph
Entry	Amount of NiCl ₂ ·6H ₂ O (mol%)	Conv. (%)	<i>E/Z</i> /alkane (%)
1	0	0	0/0/0
2	5	>99	69/16/15
3	6	>99	73/14/13
4	7	>99	82/7/11
5	8	>99	75/9/16

Reaction conditions: DPA (1 mmol), NiCl₂·6H₂O, NaBH₄(4 equiv.), CD-SH (3 mol%), Mg(OAc)₂(4 equiv.), CH₃OH (0.35 mL), DMF (8 mL), room temperature, 1 h.

Ph	h NiCl ₂ ·6H ₂ O (7 mol%) NaBH ₄ , CD-SH, Mg(OAc) ₂ CH ₃ OH-DMF, Room temperature	Ph + Ph F	Ph + Ph Ph
Entry	Protic solvent	Conv. (%)	<i>E/Z</i> /alkane (%)
1	CH ₃ OH	>99	82/7/11
2	C ₂ H ₅ OH	>99	64/27/9
3	H_2O	>99	46/50/4

Table S5 Screening of protic solvent for the semi-hydrogenation of DPA to E-stilbene

Reaction conditions: DPA (1 mmol), NiCl₂·6H₂O (7 mol%), NaBH₄(4 equiv.), CD-SH (3 mol%), Mg(OAc)₂ (4 equiv.), protic solvent (0.35 mL), DMF (8 mL), room temperature, 1 h.

	h NiCl₂·6H₂O (7 mol%) NaBH₄, CD-SH, Mg(OAc)₂	Ph + /	+/Ph
Ph	CH ₃ OH-DMF, Room temperature	Ph Ph F	Ph Ph
Entry	CH ₃ OH volume (mL)	Conv. (%)	<i>E/Z</i> /alkane (%)
1	0	98	52/36/12
2	0.10	>99	63/29/8
3	0.20	>99	75/15/10
4	0.30	>99	79/8/13
5	0.35	>99	82/7/11
6	0.40	>99	81/5/14

Table S6 Screening of the amount of methanol for the semi-hydrogenation of DPA to E-stilbene

Reaction conditions: DPA (1 mmol), NiCl₂·6H₂O (7 mol%), NaBH₄ (4 equiv.), CD-SH (3 mol%), Mg(OAc)₂ (4 equiv.), CH₃OH, DMF (8 mL), room temperature, 1 h.

Ph	NiCl ₂ ·6H ₂ O (7 mol%) NaBH ₄ , CD-SH, Mg(OAc) ₂	-Ph + $-Ph$	Ph +/
Ph C	H ₃ OH-DMF, Room temperature	Ph Ph Ph	Ph
Entry	Solvent	Conv. (%)	<i>E/Z</i> /alkane (%)
1	DMF	>99	82/7/11
2	N,N-dimethylacetamide	>99	73/7/20
	(DMAc)		
3	tetrahydrofuran THF	84	48/50/2
4	CH_2Cl_2	22	72/21/7
5	1,4-dioxane	61	9/87/4
6	acetone	10	32/64/4
7	acetonitrile	>99	31/60/9

Table S7 Screening of solvent for the semi-hydrogenation of DPA to E-stilbene

Reaction conditions: DPA (1 mmol), NiCl₂·6H₂O (7 mol%), NaBH₄ (4 equiv.), CD-SH (3 mol%), Mg(OAc)₂ (4 equiv.), CH₃OH (0.35 mL), solvent (8 mL), room temperature, 1 h.

Ph	NiCl ₂ ·6H ₂ O (7 mol%) NaBH ₄ , CD-SH, Mg(OAc) ₂ \sim CH ₃ OH-DMF, Room temperature	Ph + A	Ph + // Ph Ph
Entry	Mg(OAc) ₂ (equiv.)	Conv. (%)	<i>E</i> / <i>Z</i> /alkane (%)
1	0	>99	52/38/10
2	3	>99	74/16/10
3	4	>99	82/7/11
4	5	>99	72/15/13
5	6	>99	71/17/12

Table S8 Screening of the amount of Mg(OAc)₂ for the semi-hydrogenation of DPA to E-stilbene

Reaction conditions: DPA (1 mmol), NiCl₂·6H₂O (7 mol%), NaBH₄(4 equiv.), CD-SH (3 mol%), Mg(OAc)₂,

 $CH_{3}OH$ (0.35 mL), DMF (8 mL), room temperature, 1 h.

	h NiCl₂·6H₂O (7 mol%) NaBH₄, CD-SH, Mg(OAc)₂ →	,^Ph + ,∖	+Ph
Ph	CH ₃ OH-DMF, Room temperature	Ph Ph F	^{Ph} Ph
Entry	NaBH ₄ (equiv.)	Conv. (%)	<i>E</i> / <i>Z</i> /alkane (%)
1	0	0	0/0/0
2	2	>99	44/49/7
3	3	>99	47/46/7
4	4	>99	82/7/11
5	5	>99	74/11/15
6	NH ₃ BH ₃ (8 equiv.)	53	28/68/4

Table S9 Screening of the amount of NaBH4 for the semi-hydrogenation of DPA to E-stilbene

Reaction conditions: DPA (1 mmol), NiCl₂·6H₂O (7 mol%), NaBH₄, CD-SH (3 mol%), Mg(OAc)₂(4 equiv.),

CH₃OH (0.35 mL), DMF (8 mL), room temperature, 1 h.

Catalyst	Hydrogen source	Temp. (°C)	$TOF^{a}(h^{-1})$	Reference
N O Z T O O H	H ₂ (4.84 bar)	100	6.2	S1
$(py_3tren)GaRhX X = Me, OPh$	H ₂ (5 bar)	100	6.1	S2
PPh ₃ Ph ₃ P ,, PPh ₃ CI PPh ₃ PPh ₃ PPh ₃	H ₂ (10 equiv.)	45	2.2	S3
Ag-Ru OC CO	H ₂ (1 atm)	150	0.19	S4
SIMes	NaH	80	2.02	S5
₩ Ru COOH	H ₂ (10 bar)	25	0.71	S6
Cl ₂ Pd(PPh ₃) ₂	H_2 (1 atm)	25	0.8	S7
N Co N Mes PPh ₃ Mes	H ₂ (4 atm)	30	4.64	S8

Table S10 Comparison of TOF for the semihydrogenation of DPA to *E*-stilbene with different reported catalysts

Mes Mes $N - P'Pr_2$ $P'Pr_2$ $P'Pr_2$ $P'Pr_2$ $P'Pr_2$ $N - P'Pr_2$ Mes $P'Pr_2$	H ₂ (1 atm)	60	1.86	S9
N-Co-PtBu ₂	NH ₃ BH ₃	50	2.28	S10
NiI ₂	H ₂ (15 bar)	100	0.97	S11
	НСООН	120	0.59	S12
	H ₃ PO ₂	80	8.1	S13
(<i>i</i> -Pr) ₂ P Ni P (<i>i</i> -Pr) ₂	NaBH₄	80	1.1	S14
MeSi-Ni-H	$H_2(1 \text{ atm})$	25	24.0	S15
R_{2} R_{2} $R = Pr$	H ₂ (30 bar)	60	6.2	S16
$\begin{array}{c} & & PPh_2 \\ R_2S'''' & \\ R_2S' & \\ R_2S' & \\ & & PPh_2 \end{array}$	H ₂ (1 atm)	25	9.9	S17
NiCl ₂ ·6H ₂ O + CD-SH	NaBH ₄	Room temperture	11.8	This work

^{*a*}TOF = mol of yield *E*-stilbene/(mol of metal × time)

References:

[S1] S. P. Desai, J. Ye, T. Islamoglu, O. K. Farha and C. C. Lu, Organometallics, 2019, 38, 3466-3473.

- [S2] S. P. Desai, J. Ye, J. Zheng, M. S. Ferrandon, T. E. Webber, A. E. Platero-Prats, J. Duan,
 P. Garcia-Holley, D. M. Camaioni, K. W. Chapman, M. Delferro, O. K. Farha, J. L. Fulton,
 L. Gagliardi, J. A. Lercher, R. L. Penn, A. Stein and C. C. Lu, *J. Am. Chem. Soc.*, 2018,
 140, 15309-15318.
- [S3] K. T. Neumann, S. Klimczyk, M. N. Burhardt, B. Bang-Andersen, T. Skrydstrup and A. T. Lindhardt, ACS Catal., 2016, 6, 4710-4714.
- [S4] Y. Zhang, M. K. Karunananda, H. C. Yu, K. J. Clark, W. Williams, N. P. Mankad and D. H. Ess, *ACS Catal.*, 2019, 9, 2657-2663.
- [S5] R. Kusy and K. Grela, Org. Lett., 2016, 18, 6196-6199.
- [S6] K. Radkowski, B. Sundararaju and A. Fürstner, Angew. Chem., 2013, 125, 373-378.
- [S7] R. Maazaoui, R. Abderrahim, F. Chemla, F. Ferreira, A. Perez-Luna and O. Jackowski, Org. Lett., 2018, 20, 7544-7549.
- [S8] K. Tokmic and A. R. Fout, J. Am. Chem. Soc., 2016, 138, 13700-13705.
- [S9] K. M. Gramigna, D. A. Dickie, B. M. Foxman and C. M. Thomas, ACS Catal., 2019, 9, 3153-3164.
- [S10] S. Fu, N.Y. Chen, X. Liu, Z. Shao, S. P. Luo and Q. Liu, J. Am. Chem. Soc., 2016, 138, 8588-8594.
- [S11] N. O. Thiel, B. Kaewmee, T. T. Ngoc and J. F. eichert, *Chem.-Eur. J.*, 2020, 26, 1597-1603.
- [S12] E. Richmond and J. Moran, J. Org. Chem., 2015, 80, 6922-6929.
- [S13] T. Chen, J. Xiao, Y. Zhou, S. Yin and L.-B. Han, J. Organomet. Chem., 2014, 794, 51-54.
- [S14] R. Barrios-Francisco and J. J. García, Appl. Catal. A: Gen., 2010, 385, 108-113.
- [S15] D. J. Hale, M. J. Ferguson and L. Turculet, ACS Catal., 2022, 12, 146–155.
- [S16] R. A. Farrar-Tobar, S. Weber, Z. Csendes, A. Ammaturo, S. Fleissner, H. Hoffmann, L.
 F. Veiros and K. Kirchner, ACS Catal., 2022, 12, 2253–2260.
- [S17] J. Shen, R. Usui and Y. Sunada, Eur. J. Org. Chem., 2022, 2022, e202101563.

Fig. S2 Reusability of CD-SH modified nickel nanocatalyst in the semi-hydrogenation of DPA to *E*-stilbene with sodium borohydride.

	Ph Ph _{CH3}	NiCl₂·6H₂O (7 mol%) NaBH₄, <mark>Thiol</mark> OH-DMF, Room tempe	Ph rature Ph	+P Ph	h
Entry	Catalyst precursor	Solvent	Additives	Conv. (%)	E/alkane (%)
1	NiCl ₂ ·6H ₂ O	CH ₃ OH/DMF	-	8	63/35
2	NiCl ₂ ·6H ₂ O	CH ₃ OH/DMF	SH SH	8	80/20
3	NiCl ₂ ·6H ₂ O	CH ₃ OH/DMF	HS-SH	31	24/76
4	NiCl ₂ ·6H ₂ O	CH₃OH/DMF	SH	0	0
5	NiCl ₂ ·6H ₂ O	CH ₃ OH/DMF	SH	10	23/77
6	NiCl ₂ ·6H ₂ O	CH ₃ OH/DMF	CH ₃ (CH ₂) ₁₇ SH	43	100/0
7	NiCl ₂ ·6H ₂ O	CH₃OH/DMF	SH	45	90/10
8	NiCl ₂ ·6H ₂ O	CH ₃ OH/DMF	CD-SH	93	94/6

 Table S11 Effect of thiols on the Z-to-E isomerization of stilbene.

Reaction conditions: Z-stilbene (1 mmol), NiCl₂·6H₂O (7 mol%), thiol (3 mol%), CH₃OH (0.35 mL), DMF (8 mL), NaBH₄ (4 equiv.), room temperature, 1 h.

NMR spectra data of products

¹H NMR of monodeuterated *trans*-stilbene using NaBH₄ and CH₃OD in CDCl₃

¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 7.6 Hz, 4H), 7.37 (t, *J* = 7.5 Hz, 4H), 7.28 (s, 2H), 7.12 (s, 1H).

¹H NMR of monodeuterated *trans*-stilbene using NaBD₄ and CH₃OH in CDCl₃

¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 7.4 Hz, 4H), 7.37 (t, *J* = 6.9 Hz, 4H), 7.28 (s, 2H), 7.12 (s, 1H).

¹H NMR of dideuterated *trans*-stilbene using NaBD₄ and CH₃OD in CDCl₃

¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.7 Hz, 4H), 7.36 (s, 4H), 7.29 (s, 2H).

¹H NMR of *trans*-stilbene using NaBH₄ and CH₃OD in CDCl₃

7.14 (s, 2H).

¹H NMR of *trans*-stilbene using NaBD₄ and CH₃OH in CDCl₃

¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.7 Hz, 4H), 7.37 (t, *J* = 7.5 Hz, 4H), 7.28 (d, *J* = 8.6 Hz, 2H), 7.12 (s, 2H).

¹H NMR of *trans*-stilbene using NaBD₄ and CH₃OD in CDCl₃

¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.4 Hz, 4H), 7.38 (t, *J* = 7.0 Hz, 4H), 7.28 (dd, *J* = 6.3, 4.8 Hz, 2H), 7.13 (d, *J* = 1.4 Hz, 2H).