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Fig. S1 Schematic diagram of the experimental setup
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Fig. S2 The effect of Mn loading on the CO2 conversion and CH3OH selectivity



Fig. S3 Schematic diagram of the designed plasma-added DRIFT spectra cell

Fig. S4 The effect of temperature on CO2 conversion and CO selectivity in thermal catalysis CO2 

hydrogenation reaction.



 

Fig. S5 The reactor temperature distribution of plasma only and plasma catalysis after 3-h 

discharge
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Fig. S6 (a) The products selectivities comparison of thermal catalysis, plasma only and plasma 

catalysis reaction routes for CO2 hydrogenation to methanol; The effects of (b) H2/CO2 molar ratio 

and (c) total flow rate on products selectivities
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Fig. S7 The effect of reactor temperature on CO2 conversion and methanol selectivity

Conditions: H2/CO2 = 3, total flow rate of 40 mL/min, power of 5 W, 1wt.% MnOx/ZrO2.



Fig. S8 The elemental mapping of MnOx/ZrO2 catalyst.
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Fig. S9 (a) The schematic diagrams of Route 1 and 2; The comparison of thermal catalysis, plasma 

catalysis, Route 1 and Route 2: (b) CO2 conversion and methanol selectivity, (c) products 

selectivities.

Two stages reactors were employed in Route 1 and 2. The first thermal catalysis reactor in both 



routes worked as a CO provider since its only product was CO. This reactor was conducted at 350 

oC, in which the CO2 conversion was 4% and a feed gas with ~1% CO was achieved. This CO-

contained feed gas was then introduced to the plasma catalysis and thermal catalysis in Route 1 and 

2, respectively. 



Table S1 XPS analyses of MnOx/ZrO2 catalysts.

Sample
Mn2+ content

(%)

Mn3+ content

(%)

Mn4+ content

(%)

Os/(Ol + Os)

(%)

Fresh 44.9 16.4 38.7 21.7

Reduced 50.1 14.5 35.4 22.8

Used 53.2 10.9 35.9 21.6

Table S2 The synergy factor of plasma catalytic CO2 hydrogenation to methanol in literatures

Ref. Feed gas Product Plasma catalyst
Synergy 

factor

This work H2/CO2 CH3OH DBD MnOx/ZrO2 87

[1] H2/CO2 CH3OH DBD Cu/γ-Al2O3 12.8

[2] H2/CO2 CH3OH DBD Pt/film/In2O3 8.9

[3] H2/CO2 CH3OH DBD CuO/Fe2O3/QW 1.0

[4] H2/CO2 CH3OH DBD Cu/γ-Al2O3 1.6

[5] H2/CO2 CH3OH DBD CoxOy/MgO 1.4
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