Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supporting information

Boosting methanol production via plasma catalytic CO₂ hydrogenation over MnO_x/ZrO₂

catalyst

Xuming Zhang¹, Zhi Sun¹, Yun Shan¹, Hua pan², Yuzhen Jin¹, Zuchao Zhu¹, Liancheng Zhang¹,

Kai Li^{1,*}

1 Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech

University, Hangzhou 310018, China

2 Zhejiang Provincial Key Laboratory of Pollution Exposure and Health Intervention, College of

Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou, 310015, China

* E-mail address: likai6573@163.com (Kai Li)

Fig. S1 Schematic diagram of the experimental setup

Fig. S2 The effect of Mn loading on the $\rm CO_2$ conversion and $\rm CH_3OH$ selectivity

Fig. S3 Schematic diagram of the designed plasma-added DRIFT spectra cell

Fig. S4 The effect of temperature on CO_2 conversion and CO selectivity in thermal catalysis CO_2

hydrogenation reaction.

Fig. S5 The reactor temperature distribution of plasma only and plasma catalysis after 3-h

discharge

Fig. S6 (a) The products selectivities comparison of thermal catalysis, plasma only and plasma catalysis reaction routes for CO₂ hydrogenation to methanol; The effects of (b) H₂/CO₂ molar ratio and (c) total flow rate on products selectivities

Fig. S7 The effect of reactor temperature on CO2 conversion and methanol selectivity Conditions: $H_2/CO_2 = 3$, total flow rate of 40 mL/min, power of 5 W, 1wt.% MnO_x/ZrO₂.

Fig. S8 The elemental mapping of MnO_x/ZrO_2 catalyst.

Fig. S9 (a) The schematic diagrams of Route 1 and 2; The comparison of thermal catalysis, plasma catalysis, Route 1 and Route 2: (b) CO_2 conversion and methanol selectivity, (c) products selectivities.

Two stages reactors were employed in Route 1 and 2. The first thermal catalysis reactor in both

routes worked as a CO provider since its only product was CO. This reactor was conducted at 350 $^{\circ}$ C, in which the CO₂ conversion was 4% and a feed gas with ~1% CO was achieved. This CO-contained feed gas was then introduced to the plasma catalysis and thermal catalysis in Route 1 and 2, respectively.

Sample	Mn ²⁺ content	Mn ³⁺ content	Mn ⁴⁺ content	$O_s/(O_l + O_s)$
	(%)	(%)	(%)	(%)
Fresh	44.9	16.4	38.7	21.7
Reduced	50.1	14.5	35.4	22.8
Used	53.2	10.9	35.9	21.6

Table S1 XPS analyses of MnO_x/ZrO₂ catalysts.

Table S2 The synergy factor of plasma catalytic CO₂ hydrogenation to methanol in literatures

Ref.	Feed gas	Product	Plasma	catalyst	Synergy factor
This work	H_2/CO_2	CH ₃ OH	DBD	MnO _x /ZrO ₂	87
[1]	H_2/CO_2	CH ₃ OH	DBD	Cu/y-Al2O3	12.8
[2]	H_2/CO_2	CH ₃ OH	DBD	Pt/film/In ₂ O ₃	8.9
[3]	H_2/CO_2	CH ₃ OH	DBD	CuO/Fe ₂ O ₃ /QW	1.0
[4]	H_2/CO_2	CH ₃ OH	DBD	Cu/y-Al2O3	1.6
[5]	H_2/CO_2	CH ₃ OH	DBD	Co _x O _y /MgO	1.4

Reference

[1] Cui Z, Meng S, Yi Y, et al. Plasma-catalytic methanol synthesis from CO₂ hydrogenation over a supported Cu cluster catalyst: Insights into the reaction mechanism. ACS Catalysis, 2022, 12(2): 1326-1337. [2] Men Y L, Liu Y, Wang Q, et al. Highly dispersed Pt-based catalysts for selective CO₂ hydrogenation to methanol at atmospheric pressure. Chemical Engineering Science, 2019, 200: 167-175.

[3] Joshi N, Loganathan S. Methanol synthesis from CO₂ using Ni and Cu supported Fe catalytic system: Understanding the role of nonthermal plasma surface discharge. Plasma Processes and Polymers, 2021, 18(5): 2000104.

[4] Wang L, Yi Y, Guo H, et al. Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO₂. ACS Catalysis, 2018, 8(1): 90-100.

[5] Ronda-Lloret M, Wang Y, Oulego P, et al. CO₂ hydrogenation at atmospheric pressure and low temperature using plasma-enhanced catalysis over supported cobalt oxide catalysts. ACS Sustainable Chemistry & Engineering, 2020, 8(47): 17397-17407.