Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supporting information for

Ultralight and Spongy La-Mn-based Perovskite Catalysts Modified by Alkali Metals and Ce: Facile Synthesis and Excellent Catalytic Performance for Soot Combustion

Xuehua Yu^a, Di Yu^b, Lanyi Wang^b, Yu Ren^b, Maozhong Chen^a, Xiaoqiang Fan^a, Zhen Zhao^{a,b*},

Zbigniew Sojka^c, Andrzej Kotarba^c, Yuechang Wei^b, Jian Liu^b

a. Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical

Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, China.

- b. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, 18# Fuxue Road, Chang Ping, Beijing 102249, China.
- c. Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland

^{*} Corresponding author:

Zhen Zhao, Email: zhenzhao@cup.edu.cn

Experimental details

 $TOF(s^{-1}) = \frac{v}{O^* \text{ amount}}$

The reaction rate (v and v^*), active redox sites (O* amount), density of active redox sites (O* density) and TOF values of catalysts were determined by isothermal reaction for soot combustion, and their values are calculated by the following equations^[1]:

$$v \pmod{s^{-1} g^{-1}} = -\frac{dn}{mdt} = \frac{x_{CO_2} \times n_{CO_2}}{m}$$

 $v^* \pmod{s^{-1} m^{-2}} = \frac{v}{S} = \frac{x_{CO_2} \times n_{CO_2}}{mS}$

where $\frac{x_{CO_2}}{2}$ is the mole fraction of CO₂; $\frac{n_{CO_2}}{2}$ is the molar amount of CO₂ (mol); m is the mass of the catalyst (g); S is the BET specific surface area of catalyst (m²/g)

O^{*} amount (mol g⁻¹) =
$$\frac{2P_0 V \times A \times 10^{-6}}{RTm}$$
O^{*} density (nm⁻²) =
$$\frac{O^* \text{ amount}}{S \times 10^{18}} \times 6.02 \times 10^{23}$$

where P_0 is the atmospheric pressure (Pa); A is the integrated area of CO₂ concentration as a function of time (s); V is the volumetric flow rate of gases (m³/s); m is the mass of the catalyst (g); R is the gas constant (8.314 J/mol·K); T is room temperature (K); S is the BET specific surface area (m²/g).

Catalysts	La(NO ₃) ₃ . 6H ₂ O /g	Ce(NO ₃) ₃ . 6H ₂ O /g	Alkali metal nitrates	Mn(NO ₃) ₂ /g	Glucose /g	H ₂ O/ mL
LaMnO ₃	4.33	-	-	3.56	3.92	20
$La_{0.98}Ce_{0.01}Cs_{0.01}MnO_{3}$	4.24	0.0434	0.0195 g CsNO ₃	3.56	3.92	20
$La_{0.96}Ce_{0.02}Cs_{0.02}MnO_3$	4.16	0.0868	0.0390 g CsNO ₃	3.56	3.92	20
$La_{0.94}Ce_{0.03}Cs_{0.03}MnO_{3}$	4.07	0.1302	0.0585 g CsNO ₃	3.56	3.92	20
$La_{0.9}Ce_{0.05}Cs_{0.05}MnO_{3}$	3.90	0.217	0.0975 g CsNO ₃	3.56	3.92	20
$La_{0.85}Ce_{0.075}Cs_{0.075}MnO_3$	3.68	0.325	0.146 g CsNO ₃	3.56	3.92	20
$La_{0.8}Ce_{0.1}Cs_{0.1}MnO_3$	3.46	0.434	0.195 g CsNO ₃	3.56	3.92	20
$La_{0.6}Ce_{0.2}Cs_{0.2}MnO_3$	2.59	0.868	0.390 g CsNO ₃	3.56	3.92	20
$La_{0.8}Ce_{0.2}MnO_3$	3.46	0.868	-	3.56	3.92	20
$La_{0.8}Cs_{0.2}MnO_3$	3.46	-	0.390 g CsNO ₃	3.56	3.92	20
$La_{0.8}Ce_{0.1}Li_{0.1}MnO_3$	3.46	0.434	0.068 g LiNO ₃	3.56	3.92	20
$La_{0.8}Ce_{0.1}Na_{0.1}MnO_3$	3.46	0.434	0.084 g NaNO ₃	3.56	3.92	20
$La_{0.8}Ce_{0.1}K_{0.1}MnO_3$	3.46	0.434	0.101 g KNO ₃	3.56	3.92	20
$La_{0.8}Ce_{0.1}Rb_{0.1}MnO_3$	3.46	0.434	0.147 g RbNO ₃	3.56	3.92	20

Table S1 Recipes for the synthesis of as-prepared La-Mn-based perovskite catalysts

Catalyst	Soot/cat alyst weight ratio	Contact mode	Reaction conditions	Heating rate (°C/min)	T ₁₀ (°C)	T ₅₀ /T _m (°C)	T ₉₀ (°C)	Sm CO2(%)	Ref
3DOM La ₂ NiCoO ₆	1/10	Loose	Flow 50 mL/min, $5\%O_2+0.2\%NO+$ $5\%H_2O+Ar$ balance	2	288	362	412	98.6	2
La _(1-x) Ag _x CoO ₃ (x=2.5%)	1/10	Loose	Flow 300 mL/min, 10%O ₂ +500 ppm NO+N ₂ balance	4	302	358	448	-	3
3DOM La _{0.95} K _{0.05} NiO ₃	1/10	Loose	Flow 50 mL/min, 5%O ₂ +2000 ppm NO+N ₂ balance	2	289	338	372	98.7	4
K-Mn/3DOM La _{0.8} Ce _{0.2} FeO ₃	1/9	Loose	Flow 50 mL/min, 5%O ₂ +500 ppm NO+N ₂ balance	2	316	377	430	96.5	5
$LaCo_{0.94}Pt_{0.06}O_{3}$	1/10	Loose	Flow 100 mL/min, 2000 ppm NO/air	10	344	403	435	-	6
$\begin{array}{c} 3DOM\\ La_{0.5}Sr_{0.5}MnO_3 \end{array}$	1/9	Loose	Flow 100mL/min, 20% O_2 +500ppm NO + N ₂ balance	5	320	385	428	-	7
La _{0.7} K _{0.3} FeO _{3-δ} nanotubes	1/9	Loose	Flow 100 mL/min, 20%O ₂ +500 ppm NO	2	355	393	429	94.0	8
Ce ₁ MnO _x	1/10	Loose	Flow 50 mL/min, 10%O ₂ +2000 ppm NO+Ar balance	2	268	332	369	99.4	9
$\begin{array}{c} \text{K-OMS-2/3DOMM} \\ \text{Ti}_{0.7}\text{Si}_{0.3}\text{O}_2 \end{array}$	1/10	Loose	Flow 50 mL/min, 10% O ₂ +0.2% NO+Ar balance	2	288	333	364	97.8	10
MnO _x -CeO ₂	1/9	Loose	Flow 100 mL/min, 10%O ₂ +N ₂ balance	3	314	346	383	-	11
$\begin{array}{c} 3\text{DOM} \\ \text{Au}_2\text{Pt}_2/\text{Ce}_{0.8}\text{Zr}_{0.2}\text{O}_2 \end{array}$	1/10	Loose	Flow 50mL/min, 10%O ₂ +0.2%NO+bal ance	2	236	345	397	99.5	12
$\begin{array}{c} 3 \ wt.\% \\ Pt/Mn_{0.5}Ce_{0.5}O_{2-\delta} \end{array}$	1/10	Loose	Flow 50 mL/min, 10% O ₂ +0.2% NO+Ar balance	2	290	342	373	96.7	13
Pt-CoO x/3DOM-Al ₂ O ₃	1/10	Loose	Flow 50 mL/min, 5%O ₂ +0.2%NO+Ar balance	2	281	368	416	99.1	14
PdAu@CeO ₂ /CZ	1/10	Loose	Flow 50mL/min, 5%O ₂ +0.2%H ₂ O+Ar balance	2	276	363	404	99.6	15
La _{0.8} Ce _{0.1} Cs _{0.1} MnO 3	1/10	Loose	Flow 50 mL/min, 10%O ₂ +2000 ppm NO +Ar balance	2	268	315	350	98.5	This work
La _{0.8} Ce _{0.1} Cs _{0.1} MnO 3	1/10	Loose	Flow 50 mL/min, 10%O ₂ +2000 ppm NO ++10%H ₂ O+Ar balance	2	265	304	329	96.7	This work

Table S2. Comparation for catalytic performance of as-prepared and reported catalysts for soot combustion

Catalysts	T ₁₀ /°C	$T_{50}/^{\circ}C$	T ₉₀ /°C	Sco2 ^{m/%}
La _{0.8} Ce _{0.1} Cs _{0.1} CoO ₃ -Cycle 1	268	314	350	98.5
La _{0.8} Ce _{0.1} Cs _{0.1} CoO ₃ -Cycle 2	272	319	350	98.3
La _{0.8} Ce _{0.1} Cs _{0.1} CoO ₃ -Cycle 3	269	318	351	98
$La_{0.8}Ce_{0.1}Cs_{0.1}CoO_3$ -Cycle 4	280	329	361	97.5
La _{0.8} Ce _{0.1} Cs _{0.1} CoO ₃ -Cycle 5	279	329	361	97.8
10%H ₂ O+0 ppm SO ₂	265	304	329	96.7
10%H ₂ O+100 ppm SO ₂	296	332	442	93.8
10%H ₂ O+300 ppm SO ₂	387	459	500	82.8

 $\textbf{Table S3} \ The \ stability \ and \ sulfur \ water \ resistant \ of \ La_{0.8}Ce_{0.1}Cs_{0.1}MnO_3 \ catalysts \ for \ soot \ combustion$

Figure S1. Nitrogen adsorption-desorption isotherms of La-Mn-based perovskite catalysts with different A sites (a: LaMnO₃; b: La_{0.98}Ce_{0.01}Cs_{0.01}MnO₃; c: La_{0.96}Ce_{0.02}Cs_{0.02}MnO₃; d: La_{0.94}Ce_{0.03}Cs_{0.03}MnO₃; e: La_{0.9}Ce_{0.05}Cs_{0.05}MnO₃; f: La_{0.85}Ce_{0.075}Cs_{0.075}MnO₃; g: La_{0.8}Ce_{0.1}Cs_{0.1}MnO₃; h: La_{0.6}Ce_{0.2}Cs_{0.2}MnO₃; i: La_{0.8}Ce_{0.2}MnO₃; j: La_{0.8}Cs_{0.2}MnO₃)

 $\label{eq:Figure S2} Figure S2. Nitrogen adsorption-desorption isotherms of La_{0.8}Ce_{0.1}A_{0.1}MnO_3 catalyst (a: La_{0.8}Ce_{0.1}Li_{0.1}MnO_3; b: La_{0.8}Ce_{0.1}Na_{0.1}MnO_3; c: La_{0.8}Ce_{0.1}K_{0.1}MnO_3; d: La_{0.8}Ce_{0.1}Rb_{0.1}MnO_3)$

$$\label{eq:Figure S3} \begin{split} & \text{Figure S3. Pore distribution of La-Mn-based perovskite catalysts with different A sites} \\ & (a: LaMnO_3; b: La_{0.98}Ce_{0.01}Cs_{0.01}MnO_3; c: La_{0.96}Ce_{0.02}Cs_{0.02}MnO_3; d: La_{0.94}Ce_{0.03}Cs_{0.03}MnO_3; e: La_{0.9}Ce_{0.05}Cs_{0.05}MnO_3; f: La_{0.85}Ce_{0.075}Cs_{0.075}MnO_3; g: La_{0.8}Ce_{0.1}Cs_{0.1}MnO_3; h: La_{0.6}Ce_{0.2}Cs_{0.2}MnO_3; i: La_{0.8}Ce_{0.2}MnO_3; j: La_{0.8}Ce_{0.2}MnO_3) \end{split}$$

 $\label{eq:constraint} Figure S4. Pore distribution of La_{0.8}Ce_{0.1}A_{0.1}MnO_3 catalysts \\ (a: La_{0.8}Ce_{0.1}Li_{0.1}MnO_3; b: La_{0.8}Ce_{0.1}Na_{0.1}MnO_3; c: La_{0.8}Ce_{0.1}K_{0.1}MnO_3; d: La_{0.8}Ce_{0.1}Rb_{0.1}MnO_3) \\$

Figure S5. H₂-TPR curves of La-Mn-based perovskite catalysts with different A sites a: LaMnO₃; b: La_{0.98}Ce_{0.01}Cs_{0.01}MnO₃; c: La_{0.96}Ce_{0.02}Cs_{0.02}MnO₃; d: La_{0.94}Ce_{0.03}Cs_{0.03}MnO₃; e: La_{0.85}Ce_{0.075}Cs_{0.075}MnO₃)

 $\label{eq:constraint} \begin{array}{l} Figure \ S6. \ H_2-TPR \ curves \ of \ La_{0.8}Ce_{0.1}A_{0.1}MnO_3 \ catalysts \\ (a: \ La_{0.8}Ce_{0.1}Li_{0.1}MnO_3; \ b: \ La_{0.8}Ce_{0.1}Na_{0.1}MnO_3; \ c: \ La_{0.8}Ce_{0.1}K_{0.1}MnO_3; \ d: \ La_{0.8}Ce_{0.1}Rb_{0.1}MnO_3) \end{array}$

Figure S7. XPS spectra of La 3d (A) and Cs 3d (B) for as-prepared catalysts (a: LaMnO₃; b: La_{0.9}Ce_{0.05}Cs_{0.05}MnO₃; c: La_{0.8}Ce_{0.1}Cs_{0.1}MnO₃; d: La_{0.6}Ce_{0.2}Cs_{0.2}MnO₃; e: La_{0.8}Ce_{0.2}MnO₃; f: La_{0.8}Cs_{0.2}MnO₃)

References

- [1] Z. L. Zhang, D. Han, S. J. Wei and Y. X. Zhang, J. Catal., 2010, 276, 16-23.
- [2] X. L. Mei, J. Xiong, Y. C. Wei, Y. L. Zhang, P. Zhang, Q. Yu, Z. Zhao and J. Liu, *Appl. Catal. B: Environ.*, 2020, 275, 119108.
- [3] L. J. He, Y. Zhang, Y. C. Zang, C. X. Liu, W. C. Wang, R. Han, N. Ji, S. T. Zhang and Q. L. Liu, ACS Catal., 2021, 11, 14224-14236.
- [4] X. Mei, J. Xiong, Y. Wei, C. Wang, Q. Wu, Z. Zhao and J. Liu, Chin. J. Catal., 2019, 40, 722-732.
- [5] N. J. Feng, C. Chen, J. Meng, G. Liu, F. Fang, L. Wang, H. Wan and G. F. Guan, *Appl. Surf. Sci.*, 2017, 399, 114-122.
- [6] L. R. Zeng, L. Cui, C. Y. Wang, W. Guo and C. R. Gong, J. Hazard. Mater., 2020, 383, 121210.
- [7] P. Zhao, F. Fang, N. Feng, C. Chen, G. Liu, L. Chen, Z. Zhu, J. Meng, H. Wan and G. Guan, *Catal. Sci. Technol.*, 2019, 9, 1835-1846.
- [8] F. Fang, N. Feng, L. Wang, J. Meng, G. Liu, P. Zhao, P. Gao, J. Ding, H. Wan and G. Guan, *Appl. Catal. B: Environ.*, 2018, 236, 184-194.
- [9] D. Yu, C. Peng, X. H. Yu, L. Y. Wang, K. X. Li, Z. Zhao and Z. G. Li, Fuel, 2022, 307, 121803.
- [10] X. Yu, Y. Ren, D. Yu, M. Chen, L. Wang, R. Wang, X. Fan, Z. Zhao, K. Cheng and Y. Chen, ACS Catal., 2021, 11, 5554-5571.
- [11] J. Gao, Y. Xiong, Q. Zhang, Y. Jiang, J. Wang, S. Zou, M. Fu, J. Wu, Y. Hu and D. Ye, *Chem. Eng. J.*, 2020, 398, 125448.
- [12] Y. C. Wei, Z. Zhao, B. F. Jin, X. H. Yu, J. Q Jiao, K. X. Li, and J. Liu, Catal. Today, 2015, 251, 103-113.
- [13] X. Yu, J. Li, Y. Wei, Z. Zhao, J. Liu, B. Jin, A. Duan and G. Jiang, Ind. Eng. Chem. Res., 2014, 53, 9653-9664.
- [14] Y. C, Wei, P. Zhang, J. Xiong, Q.Yu, Q. Q. Wu, Z. Zhao and J. Liu, *Environ. Sci. Technol.*, 2020, 54, 6947-6956.
- [15] J. Xiong, X. Mei, J. Liu, Y. Wei, Z. Zhao, Z. Xie, and J. Li, Appl. Catal. B: Environ., 2019, 251, 247-60.