Supporting Information

Photo-Fenton-induced selectively dehydrogenative coupling of methanol into ethylene glycol over iron species anchored TiO₂ nanorods

Wenjun Yan,^{a,c} Na Li, *^b Zhiyu Yan^d and Zhongde Wang *^a

^aDepartment of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China. ^bCollege of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China.

^cState Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.

^dDepartment of Electrical and Computer Engineering, Texas A&M University, 188 Bizzell St., College Station, Texas 77843-3128, USA.

*Corresponding author E-mail: 2022051@tyust.edu.cn (N. Li), wangzhongde@tyut.edu.cn (Z.D. Wang)

Fig. S1 XRD pattern of pristine TiO₂ nanorods and TiO₂/FeO_x nanorods

Fig. S2 Photoluminescence spectra of TiO2 nanorods and TiO2/FeOx nanorods

Fig. S3 Yield of products for the photocatalytic conversion of methanol as a function of the reaction time (30 % aqueous H_2O_2 fed at 5 mL/h)

Fig. S4 Selectivity of products for the photocatalytic conversion of methanol as a function of the reaction time (30 % aqueous H_2O_2 fed at 5 mL/h)

Fig. S5 Effect of H₂O₂ feeding rate on the selectivity of products

Fig. S6 Recycling test of the photocatalytic conversion of methanol

Fig. S7 (A) Ti 2p narrow spectra, (B) Fe 2p XPS narrow spectra of TiO_2/FeO_x nanorods before and after cycling stability test and (C) SEM images of TiO_2/FeO_x nanorods after cycling stability test (**Fig. S6**).

Fig. S8 In situ EPR spectra of radical adducts trapped by DMPO in the methanol solution containing H_2O_2 over TiO₂/FeO_x nanorods under UV irradiation

Fig. S9 (A) Gas chromatogram and (B) Mass spectra of the products formed for the photocatalytic conversion of methanol

Table S1 Experimental data for the photocatalytic C–C coupling of methanol
--

catalyst	H ₂ O ₂ a feeding o rate n mmol/h	amount	Formation rate (mmol/h)				Selectivity	(%)	H ₂ O ₂	Methanol
		of OH mmol	EG	НСООН	minor products	EG	НСООН	minor products	utilization efficiency	Conversion rate mmol/ h
TiO ₂ /FeO _x	5	98.0	37.8	18.0	0.19	79.1	18.8	0.2	77.1	95.5
TiO ₂ /FeO _x	6	117.5	32.1	32.6	3.44	63.4	32.2	3.4	54.6	101.1