## Strong $Ru^{\delta+}$ -Ce<sup>3+</sup> electronic interaction induced by CeO<sub>y</sub> overlayer

## for enhanced low temperature $N_2$ -to- $NH_3$ conversion

Lingling Li<sup>#</sup>, Mingyuan Zhang<sup>#</sup>, Tianhua Zhang, Yinglong Gao, Jun Ni\*, Yanliang Zhou, Jianxin Lin, Xiuyun Wang\*, Lilong Jiang

National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fujian 350002, P. R. China.

<sup>#</sup>These authors contributed equally to this work.

\*Corresponding author.

E-mail address: nj@fzu.edu.cn (J. Ni); xywangfzu@163.com (X. Wang).



**Figure S1**. Enlarged XRD patterns at  $2\theta$  in the range of  $23-32^{\circ}$  over as-prepared catalysts.



Figure S2. a. Nitrogen adsorption–desorption isotherms, b. pore-size distribution profiles and c. partially enlarged pore-size distribution of Ru/BN,  $RuCe_{1.2}/BN$ ,  $RuCe_{2.4}/BN$  and  $RuCe_{3.6}/BN$ .



Figure S3. XRD patterns over the used catalysts.



Figure S4. H<sub>2</sub> reaction order over Ru/BN and RuCe<sub>2.4</sub>/BN catalysts.



**Figure S5.** TEM and HR-TEM images as well as particle distribution profiles of **a-c** Ru/BN and **d-f** RuCe<sub>2.4</sub>/BN.

| Sample                  | Ce/Ru<br>molar<br>ratio | Ru<br>content <sup>a</sup><br>(wt.%) | Ce<br>content <sup>a</sup><br>(wt.%) | BET<br>surface<br>area <sup>b</sup><br>(m <sup>2</sup> g <sup>-1</sup> ) | Average<br>pore<br>diameter <sup>b</sup><br>(nm) | $H_2$ consumption<br>(mmol $g_{Ru}^{-1})^c$ |
|-------------------------|-------------------------|--------------------------------------|--------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Ru/BN                   | 0                       | 4.5                                  | 0                                    | 45                                                                       | 26                                               | 20                                          |
| RuCe <sub>1.2</sub> /BN | 1.0                     | 3.6                                  | 5.9                                  | 42                                                                       | 18                                               | 57                                          |
| RuCe <sub>2.4</sub> /BN | 2.4                     | 3.0                                  | 10.2                                 | 45                                                                       | 16                                               | 62                                          |
| RuCe <sub>3.6</sub> /BN | 3.6                     | 3.0                                  | 14.9                                 | 52                                                                       | 14                                               | 52                                          |

Table S1. Physicochemical properties over  $RuCe_x/BN$  catalysts.

<sup>*a*</sup>ICP results.

<sup>b</sup>Obtained from N<sub>2</sub> physisorption measurement.

<sup>c</sup>Obtained from H<sub>2</sub>-TPR result.

| sample                  | crystallite size<br>(nm) | a<br>(Å) | b<br>(Å) | c<br>(Å) |
|-------------------------|--------------------------|----------|----------|----------|
| BN                      | 15                       | 2.507    | 2.507    | 6.888    |
| Du/DN                   | 17                       | 2 507    | 2 507    | ۵۵۵۵     |
| Ku/DIN                  | 17                       | 2.307    | 2.307    | 0.000    |
| RuCe <sub>1.2</sub> /BN | 17                       | 2.507    | 2.507    | 6.885    |
| RuCe <sub>2.4</sub> /BN | 17                       | 2.508    | 2.508    | 6.893    |
| RuCe <sub>3.6</sub> /BN | 17                       | 2.507    | 2.507    | 6.891    |
| Ce/BN                   | 17                       | 2.505    | 2.505    | 6.877    |

Table S2. Crystallite sizes and lattice parameters over the as-prepared samples<sup>*a*</sup>.

<sup>a</sup>XRD results for the BN phase in the samples.

| Sample                  | Ru  | Ce <sup>3+</sup> /(Ce <sup>3+</sup> +Ce <sup>4+</sup> ) |
|-------------------------|-----|---------------------------------------------------------|
| Jumple                  | (%) | (%)                                                     |
| Ru/BN                   | 0.6 | -                                                       |
| RuCe <sub>1.2</sub> /BN | 0.4 | 27                                                      |
| RuCe <sub>2.4</sub> /BN | 0.3 | 34                                                      |
| RuCe <sub>3.6</sub> /BN | 0.3 | 29                                                      |

**Table S3.** Surface Ru contents and  $Ce^{3+}/(Ce^{3+}+Ce^{4+})$  ratios over RuCe<sub>x</sub>/BN catalysts obtained from XPS results.

| Sample                                    | Ru content | Т    | Р     | WHSV                             | NH <sub>3</sub> synthesis rate                                          | TOF <sub>Ru sur</sub>               | $E_a$      | Ref.      |
|-------------------------------------------|------------|------|-------|----------------------------------|-------------------------------------------------------------------------|-------------------------------------|------------|-----------|
|                                           | (wt.%)     | (°C) | (MPa) | $(mL \cdot g^{-1} \cdot h^{-1})$ | $(\text{mmol}_{\text{NH3}}  \text{g}_{\text{cat}}^{-1}  \text{h}^{-1})$ | (10 <sup>-3</sup> s <sup>-1</sup> ) | (kJ mol-1) |           |
| RuCe <sub>2.4</sub> /BN                   | 3.0        | 400  | 0.2   | 60 000                           | 9.6                                                                     | -                                   |            | This work |
| RuCe <sub>2.4</sub> /BN                   | 3.0        | 400  | 1.0   | 60 000                           | 14.6                                                                    | 230                                 | 68         | This work |
| RuCe <sub>2.4</sub> /BN                   | 3.0        | 350  | 1.0   | 60 000                           | 5.8                                                                     | 91                                  | 68         | This work |
| Ru/CeO <sub>2</sub>                       | 3.0        | 400  | 1.0   | 60 000                           | 0.5                                                                     | -                                   | -          | This work |
| Ba/Ru/BN                                  | 4.5        | 400  | 5.0   | -                                | 2.0                                                                     | -                                   | 95         | 1         |
| Ru-Cs/MgO                                 | 6.0        | 400  | 0.1   | 18 000                           | 3.3                                                                     | 8                                   | 73         | 2         |
| Ru/C12A7:e-                               | 4.0        | 400  | 0.1   | 18 000                           | 2.1                                                                     | 76                                  | 56         | 2         |
| Ru/LaCoSi                                 | 4.3        | 400  | 0.1   | 18 000                           | 3.4                                                                     | 30                                  | 50         | 3         |
| Ru/Y <sub>5</sub> Si <sub>3</sub>         | 7.8        | 400  | 0.1   | 18 000                           | 1.9                                                                     | 70                                  | 52         | 4         |
| Ru/Ca <sub>2</sub> N:e <sup>-</sup>       | 1.8        | 300  | 0.1   | 36 000                           | 1.7                                                                     | 91                                  | 60         | 5         |
| Ru/r-CeO <sub>2</sub>                     | 4.0        | 400  | 1.    | 18 000                           | 3.8                                                                     | -                                   | 108        | 6         |
| $Ru/BaZr_{0.9}Y_{0.1}O_{3\text{-}\delta}$ | 2.0        | 400  | 0.1   | 36 000                           | 4.0                                                                     | -                                   | -          | 7         |
| YRu <sub>2</sub>                          | 69.5       | 400  | 0.1   | 18 000                           | 0.5                                                                     | 19                                  | 73         | 8         |
| LaRuSi                                    | 37.7       | 340  | 0.1   | 36 000                           | 0.8                                                                     | 28                                  | 40         | 9         |

**Table S4.** NH<sub>3</sub> synthesis performance over various Ru-based catalysts reported in this work and previous literatures under the given conditions.

## References

- D. Szmigiel, W. Raróg-Pilecka, E. Miśkiewicz, E. Maciejewska, Z. Kaszkur, J. W. Sobczak and Z. Kowalczyk, *Catal. Lett.*, 2005, 100, 79-87.
- 2. M. Hara, M. Kitano and H. Hosono, ACS Catal., 2017, 7, 2313-2324.
- Y. Gong, H. Li, J. Wu, X. Song, X. Yang, X. Bao, X. Han, M. Kitano, J. Wang and H. Hosono, J. Am. Chem. Soc., 2022, 144, 8683-8692.
- 4. Y. Lu, J. Li, T. Tada, Y. Toda, S. Ueda, T. Yokoyama, M. Kitano and H. Hosono, *J. Am. Chem. Soc.*, 2016, **138**, 3970-3973.
- 5. M. Kitano, Y. Inoue, H. Ishikawa, K. Yamagata, T. Nakao, T. Tada, S. Matsuishi, T. Yokoyama, M. Hara and H. Hosono, *Chem. Sci.*, 2016, **7**, 4036-4043.
- 6. Z. Ma, S. Zhao, X. Pei, X. Xiong and B. Hu, Catal. Sci. Technol., 2017, 7, 191-199.
- N. Shimoda, Y. Kimura, Y. Kobayashi, J. Kubota and S. Satokawa, *Intl. J. Hydrogen Energ.*, 2017, 42, 29745-29755.
- 8. T. Ogawa, Y. Kobayashi, H. Mizoguchi, M. Kitano, H. Abe, T. Tada, Y. Toda, Y. Niwa and H. Hosono, J. Phys. Chem. C, 2018, **122**, 10468-10475.
- 9. J. Li, J. Wu, H. Wang, Y. Lu, T. Ye, M. Sasase, X. Wu, M. Kitano, T. Inoshita and H. Hosono, *Chem. Sci.*, 2019, **10**, 5712-5718.