Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Distorted octahedral Cobalt(II)-Acylpyrazolone complex with tunable lattice-strain structure - An efficient electrocatalyst for overall water splitting

Claudelle Sybilline Anensong Djadock, ^{*ab} Singaram Vengatesan, ^{*ac} Alain Charly Tagne Kuate, ^{bd} Jean Ngoune, ^{*bd} Subbiah Ravichandran, ^{ac} Subramanyan Vasudevan,^{ac}

- ^a Electro-Inorganic Chemicals Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, India.
- ^b Department of Chemistry, University of Dschang, Dschang, Cameroon.
- ^c Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
- ^d Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA.

Synthesis of acylpyrazolone Schiff base ligands

Synthesis of HPMAP: 1-phenyl-3-methylpyrazolone (0.1 mol, 17.5g) was dissolved in 90-100 mL of DMF in a RB flash equipped with a stirrer and condenser. Calcuim hydroxide (0.2 mol, 14.81 g) was added to the yellow solution after 2-5 min and stirring for 2h. Then, acetyl chloride (0.1 mol, 7.85g) was added to the resultant yellow pale mixture and refluxed for 2-3 hours and the reaction was followed by TLC. The formed calcium complex was decomposed by pouring the mixture into HCl solution (2N, 200mL) which gave brown colorless solid. The brown solid after filtration was washed several times with distilled water and dried in oven at 80°C. The obtained product was soluble in chloroform, ethanol, acetonitrile and insoluble in n-hexane. Yield= 56.01%: Yield: (1.1g, 56%); mp: 72-75°C

Synthesis of HPMBP: HPMBP was prepared analogously from 1-phenyl-3-methylpyrazolone (0.1 mol, 17.5g), Calcuim hydroxide (0.2 mol, 14.81 g) and benzoyl chloride (0.1 mol, 14.05g) using the same procedure as followed for HPMAP synthesis. Yield: (17.55g, 80%); Mp: 85-88°C.

Synthesis of HPMTP: HPMTP was prepared analogously from 1-phenyl-3-methylpyrazolone(0.1 mol, 17.5g), Calcuim hydroxide (0.2 mol, 14.81 g) and toluoyl chloride(0.1 mol, 14.49g) using the same procedure procedure as followed for HPMAP synthesis. Yield: (19.85g, 78%); mp: 82-85°C.

NMR spectrum of acylpyrazolone ligands

1-phenyl-3-methyl-4-benzoylpyrazolone (HPMBP)

Fig. S1 ¹H NMR Spectrum of HPMBP

Fig. S2. ¹³C NMR Spectrum of HPMBP

¹H NMR (CDCl₃): Rf=0.57 (CH₂Cl₂: MeOH 9:1), δ= 2.10s (C₃-CH₃), 4.84s(O-H) 7.91d, 7.89-7-86dd, 7.66-7.63dd, 7.60-7.57m, 7.53-7.45m 7.33-7.29t (10H, H-ar. of HPMBP).
¹³CNMR (CDCl₃): δ=15.96s (C₃-CH₃), 103.73s(C=C-OH), 120.93s, 121.26s, 126.85, 128.01s, 128.56, 129.27s, 132.08, 137.34s, 137.74s (C-ar of HPMBP), 148.13s (C=N), 161.59s (C-OH),

192.20(C=O).1-3

Fig. S4 ¹³C NMR Spectrum of HPMTP

¹H NMR (CDCl₃): Rf=0.78 (CH₂Cl₂:MeOH 9:1), δ=2.09s (C3-CH₃), δ=2.44s (C4-CH₃), 4.75s(O-H), 7.91-7.89d, 7.84-7.82d, 7.46-7.44d, 7.40-7.36t, 7.24-7.22d (9H, H-ar of HPMTP). ¹³CNMR (CDCl₃): δ=16.17s (C3-CH₃), δ= 21.79s (C4-CH₃), 103.89s (C=C-OH),120.91s, 121.29s, 126.60s, 128.29s, 129.04s, 129.18s, 135.09s, 137.58s, 142.64s (C-ar of HPMTP), 148.18s

(C3), 162.11s (C-OH), 191.72(C=O).4,5

1-phenyl-3-methyl-4-acetylpyrazolone (HPMAP)

Fig. S5 ¹H NMR Spectrum of HPMAP

Fig. S6 ¹³C NMR Spectrum of HPMAP

FT-IR spectra of acylpyrazolone ligands

Fig. S7 FT-IR spectra of acylpyrazolone ligands: HPMAP, HPMBP and HPMTP

Table. S1 Infrared vibrational frequencies (cm⁻¹) of the acylpyrazolone ligand derivates and their peak assignments

НРМАР	НРМВР	НРМТР	Assignments
2415 16 hr	2452.051-	2476 201-	A OIL and form of ligand
3413.10 br	3432.930f	3470.300r	V-OH enoi form of figand
1621.17br	1602.95br	1634.24br	$\sqrt{C=O}$
1549.64s	1580.43s	1555.83s	$\sqrt{C=N}$ of Pyrazole ring
			stretching
1493.02m	1492.57m	1490.59w	$\sqrt{C}=C$ of phenyl and
			pyrazole
1381.46m	1349.53m	1212.42	\sqrt{as} C-N of pyrazole ring
1059.99s	1140.79s	1167.31s	√as C-O
1030.92m,	1033.49m,1008.73m	1062.29m,1025-	C-H in plane deformation
1004.49m		40m	and CH_3 rocking
890.44br,753.69br	791br, 791br	753.73br 943.36br,	Chelating deformation

509.91	637.13,	688.36	Chelating ring vibration			
Legend = br = Broad, S = strong, W = weak, vas = Asymetric stretching, vs = Symetric stretching						

Table. S2 CHNS analysis data and physical properties of the synthesized

Compounds,	Calculated			Melting
empirical formula	(Experimental) (%)			Point °C
	С	Ν	Н	
HPMBP	73.29	10.06	5.03	85-88
$C_{17}H_{14}N_2O_2$	(71.90)	(10.3)	(6.14)	
HPMTP	73.95	9.58	5.52	82-85
$C_{18}H_{16}N_2O_2$	(72.30)	(8.84)	(5.66)	
HPMAP	66.59	12.94	5.54	72-75
$C_{12}H_{12}N_2O_2$	(67.75)	(14.73)	(4.80)	
$[(OH_2)_2(PMBP)_2Co]$	62.67	8.60	4.91	Carbonized
$C_{34}H_{30}N_4O_6Co$	(60.16)	(8.60)	(5.05)	between
$[(OH_2)_2(PMTP)_2Co]$	63.62	8.24	5.30	130-140
$C_{36}H_{34}N_4O_6Co$	(62.89)	(8.14)	(5.74)	°C

acylpyrazolone ligands and their Coblat complexes

Fig. S8 Optimized structures of HPMAP, HPMBP and HPMTP (B3LYP/6-31G(d. p) basis set.)

Fig. S9 HOMO and LUMO distribution of HPMAP, HPMBP and HPMTP

Ligands	E(HOMO)	E(LUMO)	ΔE	Ι	А	ŋ	S
	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)
HPMAP	-6.287	-1.216	5.071	6.287	1.216	2.535	0.395
HPMBP	-6.306	-1.758	4.558	6.306	1.758	2.274	0.439
HPMTP	-6.289	-1.728	4.561	6.289	1.728	2.280	0.438

Table. S3 Frontier orbital energies, Ionization potential, electron Affinity, Softness andChemical hardness of HPMAP, HPMBP and HPMTP ligands

Table. S4 NBOs and hybridization states of HPMAP, HPMBP and HPMTP obtained at B3LYP/6-31G (d,p) level

НРМАР		HPMBP		НРМТР	
Donors NBO	Hybrid	Donors NBO	Hybrid	Donors NBO	Hybrid
δ (1) C1- O17	sp ^{2.40} (C1) sp ^{1.83} (O17)	δ (1) C1-O17	sp ^{2.39} (C1) sp ^{1.82} (O17)	δ (1) C1- O17	sp ^{2.39} (C1) sp ^{1.82} (O17)
δ (1) C18 -O24	sp ^{2.47} (C18) sp ^{1.46} (O24)	δ (1) C18 -O33	sp ^{2.55} (C18) sp ^{1.53} (O33)	δ (1) C18 -O37	sp ^{2.55} (C18) sp ^{1.53} (O37)
LP (1) O17	sp ^{1.38}	LP (1) O17	sp ^{1.39}	LP (1) O17	sp ^{1.39}
LP (1) O24	Sp ^{0.84}	LP (1) O33	sp ^{0.90}	LP (1) O37	sp ^{0.91}
		LP (1) C13	p ¹	LP (1) C13	p ¹

HPMRP	нрмтр	Complex 1	Complex 2	Assignments
		Complex 1	Complex 2	
		3450-3700	3450-3700	√-OH of water
1602.95br	1634.24br	1611.25 br	1609.89 br	√C=O
1580.43s	1555.83s			$\sqrt{C}=N$ of Pyrazole ring
				stretching
1492.57m	1490.59w	1484.45-1300m	1487.31-1300 w	$\sqrt{C=C}$ of phenyl and
				pyrazole
1349.53m	1212.42			$\sqrt{\text{as C-N of pyrazole ring}}$
1140.79s	1167.31s	1021.32-	1030.69-1062.14s	√as C-O
		1059.61s		
		552.26 -	527.43-441.61w	Со-О
		438.01w		
		839.36 w	842.20 w	coordinated water
				molecule

Table. S5 Infrared vibrational frequencies (Cm⁻¹) of the acylpyrazolone ligands and its cobalt complexes, and their assignments

 Table. S6 UV-visible absorption wavelengths (nm) of acylpyrazolone ligands derivates and its cobalt complexes, and their assignments

HPMBP	НРМТР	Complex 1	Complex 2	Assignments
285	293	280	285	$\pi \rightarrow \pi^*$
346	368	340	347	$n \rightarrow \pi^*$

Fig. S10 EDAX spectra of (a) complex (1) and (b) complex (2)

	Cobalt chloride hexahydrate		Complex (1)		Complex (2)	
	B.E (eV)	FWHM (eV)	B.E (eV)	FWHM (eV)	B.E (eV)	FWHM (eV)
Co2p3/2	780.65	3.07	778.74	2.93	778.47	2.58
Co 2p _{3/2} satellite	785.79	6.52	782.72	6.58	782.20	6.56
Co 2p _{1/2} satellite	802.57	5.05	798.91	5.51	798.29	6.91
0 1s	531.28	2.88	533.98 529.43 529.34 528.85	1.67 2.54 1.18 1.28	533.80 529.38 529.07 528.69	1.58 1.78 1.11 1.21
N 1s			398.15 396.68	1.21 1.67	398.18 396.72	1.14 1.58
C 1s			289.21 284.42 282.66 282.11	1.58 1.46 1.31 1.02	289.00 284.50 282.51 282.05	1.52 1.02 1.43 0.98
Spin-orbital splitting	$\Delta_{E_{1a}=15.96}$ $\Delta_{E_{2a}=16.78}$		$\Delta E_{1b} = 15.79$ $\Delta E_{2b} = 16.19$		$\Delta_{E_{1c}=15.94}$ $\Delta_{E_{2c}=16.09}$	

Table. S7 XPS Binding Energies Data, FWHM of the Co 2p_{3/2}, Co 2p_{1/2} and their satellite of Cocomplexes and Co(II) chloride hexahydrate

Fig. S11 TGA/DTA curves of the cobalt-acylpyrazolone complexes under N_2 atmosphere

Table. S8 Comparison of cobalt complexes towards OER with literature reportedCobalt and transition metal based electrocatalysts in 1M KOH

Flectrocatalysts	Current	Overpotential (mV)	Tafel slope	Reference
Licenoeuurysis	(mA/cm^2)	(111)	(III V/dee)	Reference
CoSe ₄	10	320	61.6	6
[Co(L1)]				
$H_2L1: N, N0- bis(salicylidene)-4-$		316	75	_
chloro-1,2-phenylendiamine	10			_ 7
[Co(L2)]N,N0				
H_2L_2 : N,N0-bis(salicylidene)-4-		247	50	
bromo-1,2-phenylendiamine				
СоООН	0.1	385	94.6	8
$([Co1.5(tib)(dcpna)] \cdot 6H_2O)$				
1,3,5-tris(1-imidazolyl)-benzene				
(tib), 5-(30 ,50 -	10	360	89	8
dicarboxylphenyl)nicotinic acid				
(H3dcpna)				
Co ₃ O ₄ /NRGO (N-doped reduced				
graphene oxide (NRGO)	10	420	83	9
[CoIII(LN ₂ O ₃)H ₂ O]	10	500	No data	10
СоР		400	57	11
$[CoL_2)$				
(H2L = 4-chloro-1,2-bis				
[2-hydroxy-5-	10	360	No data	12
(phenylazo)benzylideneamino]benze				
ne				
$[CoL_2]$				
L2:Bis[Salicylydene]-1,2-	2	140	84	12
Iminophenylenediamine				
[Co(L) (CH OH)]	0.5	520		
L2: Soduim (E)-4-(2-			No data	12
hydroxylnaphtalene-1-yl)diazinyl	5.0	720		
benzenesulfonate				
NiCo LDHs/GF	20	249	108.02	13
3D-Ni-MOF/NF with 4,4'-biphenyl	20	350		14
dicarboxylic acid				
Complex (1)	10	140	50	Present
Complex (2)	10	320	90	work

Table. S9 Comparison of EIS data of cobalt complexes towards OER with literature reported

 Cobalt based electrocatalysts

I			1	1
Compounds	Rs (ohm)	Rct (ohm)	Cdl	Reference
$([Co1.5(tib)(dcpna)] \cdot 6H_2O)$	13.4	247.0	118	6
CooOl	14.1	408.6	0.56	-
00304	17.1	400.0	0.50	
CaSa4	No data	100	No data	0
CoSe4	No data	180	No data	8
Complex (1)	48.37	174.09	No data	Present
Complex (2)	39.6	265.28	No data	work

Fig. S12 (a) CV curves of Cobalt acylpyrazolone complex (1) and (2), (b) Calculated area of complex 1 and (c) Calculated area of complex 2 with reduction of Co^{3+} to $Co^{2+.}$

Determination of actives sites from the redox curves

- Co)
= 0.077 mVA mplex (1)
= 0.000077 VA	
200 mV/s= 0.2 V/s	
= 0.000077 VA / 0.2 Vs-1 Since, the second seco	ne
= 0.00038 As oxidatio	n
$= 0.00038 \text{ C}$ of Co^{2+}	to
Co ³⁺ is	a
= 0.00038 C / 1.602 ×10 ⁻¹⁹ C single	
$= 2.40 \times 10^{15}$ electron	
transfer	
reaction	,
= 0.0506 mVA	
= 0.0000506 VA	
200 mV/s = 0.2 V/s	
= 0.0000506 VA / 0.2 Vs-1	
= 0.00025 As	
= 0.00025 C	
= $0.00025 \text{ C} / 1.602 \times 10^{-19} \text{ C}$	
$= 1.56 \times 10^{15}$	
electro	on
as the number of surface-active site	es.
cipated in OER is 2.40 ×10 ¹⁵ and 1.56 ×10 ¹⁵ f	or
	- Co = 0.077 mVA mplex (1 = 0.000077 VA 200 mV/s= 0.2 V/s = 0.00038 As oxidation = 0.00038 C of Co ²⁺ . Co ³⁺ is = 0.00038 C / 1.602 × 10 ⁻¹⁹ C single = 2.40 × 10 ¹⁵ electron transfer reaction, = 0.0506 mVA = 0.0000506 VA 200 mV/s= 0.2 V/s = 0.0000506 VA / 0.2 Vs-1 = 0.00025 As = 0.00025 C / 1.602 × 10 ⁻¹⁹ C = 1.56 × 10 ¹⁵ electron the number of surface-active site cipated in OER is 2.40 × 10 ¹⁵ and 1.56 × 10 ¹⁵ f

complex (1) and (2) respectively.

Determination of Turnover Frequency (TOF) from OER overpotentials

TOF was calculated by calibrating the surface-active Co atoms that undergone redox reaction before onset of OER only participated in OER electrocatalysis.

Therefore, TOF can be calculated by,

Where,

j = current density

NA= Avogadro number

F = Faraday constant

n = Number of electrons

 Γ = Surface concentration

For Complex (1)

 $TOF_{1.52V} = [(40.70 \times 10^{-3}) \quad (6.023 \times 10^{23})]/ \quad [(96485) \quad (4) \quad (0.240 \quad \times 10^{16})]$ $\underline{TOF_{1.61V}} = 26.46 \text{ s}^{-1}$

For Complex (2)

 $\text{TOF}_{1.52V} = [(18.30 \times 10^{-3}) (6.023 \times 10^{23})] / [(96485) (4) (0.156 \times 10^{16})]$

 $\underline{\text{TOF}_{1.61 \text{ V}}} = 18.30 \text{ s}^{-1}$

Fig. S13 Selected cycle CV curve of Complex (1) and (2) taken at a scan rate of 200 mV/se

Fig. S14 LSV curve at a scan rate of 50 mV/s, (b) Tafel slope at overpotential of 597 mV of cobaltacylpyrazolone complexes (1) in $0.5 \text{ M} \text{ Na}_2\text{SO}_4$

Compounds	Current	Over	Tafel	reference
	density	potential	slope(mV/dec)	
	(mA/cm^2)	(mV)		
CoP@PC-750	10	85mv		
	2	104		
Co-NCNTs	10	170	97	15
	2	65		
Co-Phosphine	10	110	93	16
Co-NRCNTs(
N- riche doped	2	380	No data	17
carbon				
nanotubes)	10	540		
Co(BFAC)CNT	$0.8 \text{ m} /\text{om}^{-2}$	800	No data	18
S		800		
Complex (2)	2	573	129	Present
				work

 Table. S10 Comparison of cobalt complexes towards HER with literature reported

 Cobalt based electrocatalysts in 1M KOH

Fig. S15 (a) LSV curves at a scan rate of 50 mV/s, (b) Tafel slope and (c) EIS spectra of complex (1) and

(2)/GC in neutral condition; (d) H_2 bubbles on the electrode of Cobalt-pyrazolone complex (2)/GC

Fig. S16 (a) CV curves and (b) Selected cycle CV curve of complex (1) taken at a scan rate of 200 mV/sec.

Fig. S17 (a), (b) SEM images and corresponding (c) EDAX spectra of complex (2) after continuous electrolysis at 1.6 V vs RHE.

Fig. S18 (A–C) before and (D-E) Post-OER HR-TEM images of complex (2), (F) the corresponding SAED patterns of the post-OER sample and (G-H) High resolution spectra of Co2p and O1s for the post-OER of complex (2)

DFT Studies

Fig. S19 Molecular electrostatic potential of acylpyrazolone ligands

Fig. S20. Theoretical FT-IR spectra of cobalt-acylpyrazolone complexes

		Complex (1)	Complex (2)		
	Occupancy	Energy (eV)	Energy (eV)	orbitales	
n=1 1=0	2.00	-7515.3151	-7515.5740	S	
n=2 1=0	2.00	-882.3445	-882.5902		-
n=2 1=1	6.00	-765.9584	-766.2053	р	HOMOs
n=3 l=0	2.00	-99.2845	-99.5351	S	-
n=3 l=1	6.00	-64.4929	-64.7435	р	-
n=3 l=2	7.00	-7.9180	-8.1606	d	-
n=4 1=0	2.00	-4.7864	-5.0375	S	-
n=3 l=2	0.00	-35.9794	-35.9801	d	LUMOs
n=4 l=0	0.00	-20.6063	-20.6280	Р	
n=4 l=1	0.00	-14.4467	-14.5301	S	-
n=4 l=1	0.00	-6.9885	-7.2110	Р	-

Table. S11 Occupancy of energy orbitals of Co(II) ions in complex (1) and (2)

References

- 1. E. C.A. Okafor, Spoctrochim Acta., 1984, 40A, 5 397-401.
- 2. M. Fabio, R. Pettinari and C. Pettinari, Coord. Chem. Rev., 2015. 303, 1-31.
- 3. M. Fabio, J. Palmucci, C. Pettinari, R. Pettinari, S. Scuri, I. Grappasonni, M. Cocchioni, M. Amati, F. Lelj and A. Crispini, *Inorg. Chem.*, 2016, **55(11)**, 5453–5466.
- 4. S. Parihar, S. Pathan, R. N. Jadeja, A. Patel and V. K. Gupta, Inorg. Chem. 2011. 51, 1152–1161.
- 5. M. Atanassova, V. Kurteva, L. Lubenov, S. Varbanov and I. Dukov, *Sep. Puri. Technol.*, 2012, *95*, 58–63.
- 6. M. A. Ibrahim, M. Jahangir, C. I. Polydoros and F. Eleftherios, *Molecules*. 2021, 26, 945.
- 7. S. Zohreh, S. K. Parya and M. R. Rahim, Appl. Organomet. Chem., 2021, 35(3), 1-15
- 8. M. Qingguo, Y. Jianjian, M. Shixuan, Z. Mujun and L. Jitao, Polymers., 2017, 9, 676.
- 9. M. S. Burke, M. G. Kast, L. Trotochaud, A. M. Smith and S. W. Boettcher, *J. Am. Chem. Soc.*, 2015, **137**, 3638-3648.
- 10. X. Zhicai, L. Qian, X. Wei, M. A. Abdullah, S. Xuping, *Chem. Sus. Chem.*, 2015, 8(11), 1850–1855.
- 11. T. Jingqi, L. Qian, M. A. Abdullah and S. Xuping, J. Am. Chem. Soc., 2014, 136, 7587-7590.
- 12. Z. Xiaoxin, H.Xiaoxi, G. Anandarup, S. Rafael, R. S. Bhaskar, M. Elis Ka, and A. Tewodros, *Angew. Chem.*, 2014, **126**, 4461–4465.
- 13. C. Ye, L. Zhang, L. Yue, B.Deng, Y. Cao, Q. Liu, Y. Luo, S. Lu, B. Zheng and X. Sun, *Inorg. Chem. Front.*, 2021, 8, 3162–3166
- 14. C. Meng, Y. Cao, Y. Luo, F. Zhang, Q. Kong, A. A. Alshehri, K. A. Alzahrani, T. Li, Q. Liu and X. Sun, *Inorg. Chem. Front.*, 2021, **8**, 3007–3011
- L. Xialiang, L. Haitao, L. Jieyu, Z. Xueli, D. Shuping, Z. Zongyao, T. Xixi, Z. Wei, W. Weichao and Z. Xiaohong, *Angew. Chem. Int. Ed.* 2018, 57, 15070–15075.
- 16. H. Binbin, W. Yan, Z. Shuzhong and Y. Jianshan, Appl. Surf. Sci., 2017, 396, 121–128.
- 17. S. Hua-Tian, L. Xiu-Xiu, W. Fang-Hui and Y. Wei-Bin, *Dalt. Trans.*, 2017, 46, 16321-16326.
- 18. W. Jiadong, W. Depeng, W. Shuao, L. Huiling, W. Cheng and W. Xun, *Small.*, 2020, 16, 1900550