Supporting information

Construction and Engineering of Interfacial Structure in Cu_x/FeMgO_y Catalyst for Photoreduction of CO₂ to Ethylene

He Yu,¹ Baoai Fu,¹ Fengzhi Fu,² Yanfei Zhu,¹ Yanan Liu,^{1,*} Junting Feng^{1,*}, Dianqing Li¹

¹State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing, 100029, China ²Hengshui High School of Hebei, Hebei, 053099, China

* Corresponding author

Address: Box 98, 15 Bei San Huan East Road, Beijing 100029, China

Tel: +86 10 64436992 Fax: +86 10 64436992

E-mail: <u>ynliu@mail.buct.edu.cn</u> (Yanan Liu); <u>fengit@mail.buct.edu.cn</u> (Junting Feng)

Figure S1. Production of (A) CO, (B) CH_4 on Cu_x/Fe_1MgO_y , $Cu/MgAlO_y$ and $Fe/MgAlO_y$ catalysts

Figure S2. Evolution rate of CO and CH_4 at 2h over Cu_x/Fe_1MgO_y , $Cu/MgAlO_y$ and $Fe/MgAlO_y$ catalysts

Figure S3. Evolution rate of CO and CH_4 at 3h over Cu_x/Fe_1MgO_y , $Cu/MgAlO_y$ and $Fe/MgAlO_y$ catalysts

Figure S4. Evolution rate of CH₄ at 4h over Cu_x/Fe₁MgO_y, Cu/MgAlO_y and Fe/MgAlO_y catalysts

Catalysts	catalyst mass • (mg)	Product evolution rate (μ mol g ⁻¹ h ⁻¹)		
		СО	CH ₄	C_2H_4
Cu ₁ /Fe ₁ MgO _y	1	40.1	0.9	9.9
6%CuO/WO ₃ ¹	50	1.6	-	-
3%Pt/p-C ₃ N ₄ ²	100	4.7	4.0	-
$Cu^{\delta +}$ /CeO ₂ -TiO ₂ ³	10	3.5	1.6	4.5
Cu ₂ O@Cu@UiO- 66-NH ₂ ⁴	3	20.9	8.3	-
Ag/TiO ₂ ⁵	10	5.2	-	-
a-Fe ₂ O ₃ /BCN ⁶	4	11.0	0.7	-
$\alpha\text{-}Fe_2O_3/Cu_2O^7$	100	3.1	0.6	-
Cu@Cu ₂ O/N-GCs ⁸	50	4.0	5.6	-
Ni-SA-x/ZrO ₂ ⁹	10	11.8	-	-
Ru-Bi ₂ MoO ₆ ¹⁰	30	23.8	-	-
ZnSe– CsSnCl ₃ ¹¹	5	54.0	3.0	-
$TiO_2@Cu^{12}$	10	25.4	5.8	-
$SnTa_2O_6^{13}$	20	31	-	-
Mn:CsPb(Cl/Br)314	10	64	-	-
Pt SA/ZrO ₂ ¹⁵	20	16.6	0.4	-
BiOIO ₃ nanostrips ¹⁶	20	17.33	-	-
$Au_{SA}Cd_{1-x}S^{17} \\$	30	32.2	11.3	-
$CeO_2 @CdS-Cu_xS_y{}^{18}$	5	-	18.2	-
Cu/Fe-CNC ¹⁹	20	6.66	-	-

 Table S1. Performance comparison of Cu₁/Fe₁MgO_y and some reported photocatalysts for CO₂

 reduction

Figure S5. Recycling experiments of Cu₁/Fe₁MgO_y photocatalyst for three cycles

Figure S6. In situ FTIR spectra of humid CO₂ adsorbed on (A) Cu₄/Fe₁MgO_y and (B) Fe/MgAlO_y

REFERENCES

1 Xie, Z. K.; Xu, Y. Y.; Li, D. et al. Construction of CuO quantum Dots/WO₃ nanosheets 0D/2D Z-scheme heterojunction with enhanced photocatalytic CO₂ reduction activity under visible-light. *J. Alloys Compd.* **2021**, 858, 157668.

2 Kočí, K.; Van, H. D.; Edelmannová, M. et al. Photocatalytic reduction of CO_2 using Pt/C₃N₄ photocatalyts. *Appl. Surf. Sci.* **2020**, 503, 144426.

3 Wang, T.; Chen, L.; Chen, C. et al. Engineering Catalytic Interfaces in $Cu^{\delta+}/CeO_2$ -TiO₂ Photocatalysts for Synergistically Boosting CO₂ Reduction to Ethylene. *ACS Nano.* **2022**, 16, 2, 2306-2318.

4 Wang, S. Q.; Zhang, Xi. Y.; Dao, X. Y. et al. Cu₂O@Cu@UiO-66-NH₂ Ternary Nanocubes for Photocatalytic CO₂ Reduction. *ACS Appl. Nano Mater.* **2020**, 3, 10, 10437-10445.

5 Jin, Lei.; Shaaban, E.; Bamonte, Scott. et al. Surface Basicity of Metal@TiO₂ to Enhance Photocatalytic Efficiency for CO₂ Reduction. *ACS Appl. Mater. Interfaces.* **2021**, 13, 38595-38603. 6 Wang, X. H.; Liang, F.; Gu, H. H. et al. In situ synthesized α -Fe₂O₃/BCN heterojunction for promoting photocatalytic CO₂ reduction performance. *J. Colloid Interface Sci.* **2022**, 621, 311-320. 7 Wang, J. C.; Zhang, L.; Fang, W. X. et al. Enhanced Photoreduction CO₂ Activity over Direct Z-Scheme α -Fe₂O₃/Cu₂O Heterostructures under Visible Light Irradiation. *ACS Appl. Mater. Interfaces.* **2015**, 7, 16, 8631-8639.

8 He, L.; Zhang, W. Y.; Zhao, K. et al. Core–shell Cu@Cu₂O nanoparticles embedded in 3D honeycomb-like N-doped graphitic carbon for photocatalytic CO₂ reduction. *J. Mater. Chem. A.* **2022**, 10, 4758.

9 Xiong, X. Y.; Mao, C. L.; Yang, Z. J. et al. Photocatalytic CO₂ Reduction to CO over Ni Single Atoms Supported on Defect-Rich Zirconia. *Adv. Energy Mater.* **2020**, 10, 2002928.

10 Ren, G. M.; Liu, S. Tong.; Li, Z. Z. et al. Highly Selective Photocatalytic Reduction of CO₂ to CO Over Ru-Modified Bi₂MoO₆. *Sol. RRL.* **2022**.

11 Li, N. Ya.; Chen, X. J.; Wang, J. et al. ZnSe Nanorods–CsSnCl₃ Perovskite Heterojunction Composite for Photocatalytic CO₂ Reduction. *ACS Nano*. **2022**, 16, 3332–3340.

12 Liu, M.; Zheng, L. R.; Bao, X. L. et al. Substrate-dependent ALD of Cu^x on TiO₂ and its performance in photocatalytic CO₂ reduction. *Chem. Eng. J.* **2021**, 405, 126654.

13 Zhao, J. G.; Xiong, Z.; Wang, J. Y. et al. SnTa₂O₆: A novel CO₂ reduction photocatalyst with nearly 100% CO selectivity. *Chem. Eng. J.* **2022**, 446, 137242.

14 Wang, J.; Xiong, L.; Bai, Y. et al. Mn-Doped Perovskite Nanocrystals for Photocatalytic CO₂ Reduction: Insight into the Role of the Charge Carriers with Prolonged Lifetime. *Sol. RRL.* **2022**.

15 Dong, S.; Liu, W.; Liu, S. et al. Single atomic Pt on amorphous ZrO₂ nanowires for advanced photocatalytic CO₂ reduction. *Mater. Today.* **2022**, 17, 100157.

16 Chen, F.; Ma, Z. Y.; Ye, L. Q. et al. Macroscopic Spontaneous Polarization and Surface Oxygen Vacancies Collaboratively Boosting CO₂ Photoreduction on BiOIO₃ Single Crystals. *Adv. Mater.*2020, 32, 1908350.

17 Cao, Y.; Guo, L.; Dan, M. et al. Modulating electron density of vacancy site by single Au atom for effective CO₂ photoreduction. *Nat Commun* **2021**, 12, 1675.

18 Guan, Z. F.; Chen, Y. J.; Han, W. et al. Engineering tandem double p-n heterostructured $CeO_2@CdS-Cu_8S_5$ hollow spheres for remarkable photocatalytic CO_2 reduction. *Appl. Surf. Sci.* **2023**, 616, 156433.

19 Bian, S. Y.; Li, X. Y.; Zhang, L. et al. Bimetal Cu and Fe modified $g-C_3N_4$ sheets grown on carbon skeleton for efficient and selective photocatalytic reduction of CO₂ to CO. *J. Environ. Chem. Eng.* **2023**, 11, 109319.