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Figure S1 – Top-20 most common reaction classes in the set-n1 and set-n5 reference routes and 
their likelihood (occurrence divided by the total number of reactions). There are 21 reaction classes 
in the figure because top-20 is not the same for both sets. There are 28,951 and 36,029 reactions in the 
set-n1 and set-n5 reference routes, respectively. 

. 

Table S1 – Cross comparison on ability to find a solution for the set-n1 routes

Found by
Method 1 Method 2 Both Method 1 Method 2 Neither
MCTS Retro* 0.96 0.01 0.01 0.02
MCTS DFPN 0.85 0.13 0.00 0.03
Retro* DFPN 0.85 0.13 0.00 0.03
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Figure S2 – Example of top-ranked route for a target where Retro* and DFPN found the reference 
route but MCTS was unable to. A) Route to synthesize the target as extracted from the 
US20070232591A1 patent, which was recovered by Retro* and DFPN. B) Alternative route to 
synthesize the target predicted by both MCTS. The one-step model probability and rank of the template 
applied on the target in route A) was ~3-3 and 18, respectively whereas the probability and rank of the 
template applied on the target in route B) was ~2-2 and 7, respectively. Thus Retro* and DFPN were 
able to utilize a template with much lower rank and could recover the reference route, whereas MCTS 
deemed this template to be too unlikely to continue exploring.



Figure S3 – Example of reference and top-ranked routes for a target where no algorithm could 
recover the reference route. A) The reference route extracted from patent US20030013720A1, B) top-
ranked route from MCTS, C) top-ranked route from Retro*. Both MCTS and Retro* were able to find 
a shorter route to the target, but both routes will have selectivity issues. In B) there is a selectivity issue 
with the second step and in C) there is a selectivity issue with the first step.



Table S2 – Overview of the search algorithms tested in this work. The boxes describe the main statements in one iteration of each of the algorithms. For 
clarity many of the extra checks of node states and details of various calls has been omitted.

MCTS Retro* DFPN

# Select leaf
leaf <- root
while leaf is expanded and leaf is not 
terminal
  select child with best UCB score
  leaf <- child

Expand leaf with one-step model, add 
children nodes

# Rollout
while leaf is not terminal
  select child with best UCB score
  expand child with one-step model
  leaf <- child

backpropagate reward of leaf

Select leaf with minimum estimated cost from 
all expandable leaf-nodes

Expand leaf with one-step model, add AND/OR 
sub-trees

Update the cost of all ancestor nodes of the 
selected leaf given the cost of the added 
molecules

if first iteration
  frontier <- root

# Select new frontier
while frontier is not expandable
  update proof and disproof numbers of frontier
  if frontier cannot be searched
    frontier <- parent of frontier
  else
    find child with minimum proof number
    frontier <- child

# Expanding molecule node
expand frontier, adding reaction nodes
update proof and disproof numbers of frontier
find child with minimum proof number
frontier <- child

# Expanding reaction node
expand frontier adding molecule nodes
update proof and disproof numbers of frontier
find child with minimum proof number
frontier <- child




