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S1 Normalising inputs for kernel methods
Various normalisation methods were tested in order to justify those used in the results reported. As skewed χ2 and additive
χ2 are only well defined for a positive input, data was scaled between 0 and 1 using min-max normalisation before use with
these functions.

When performing K-means clustering with either the radial basis function (RBF) or no kernel method at all (the identity
function), the following normalisation methods were considered:

• l2 : l2 normalisation.

• min-max -1:1 : Min-max normalisation to scale data between -1 and 1.

• min-max 0:1 : Min-max normalisation to scale data between 0 and 1.

• standard : Standardisation of each dimension to mean 0 and unit variance.

• none: No normalisation method.

Every dataset tested in sections 3.2 and 3.3 was normalised using each normalisation method. Normalised data were then used
as input to RBF and the identity function, the resulting data was the clustered using K-means clustering (K used between 2
and 10 inclusive). For each kernel, dataset, and value of K, the normalisation method which resulted in the lowest standard
deviation between cluster sizes (cluster size unevenness) was recorded. Normalisation methods which most frequently results
in the lowest cluster size uneveness were used in the results reported in the main text. For RBF no normalisation was used,
and when testing without a kernel data was scaled between -1 and 1 using min-max scaling (fig. S1).

S2 Experiments in repeatability
As the k-means clustering part of LOCO-CV (and kernelised LOCO-CV) is non-deterministic, experiments were carried
out to investigate whether this would significantly impact the repeatability metrics taken using these techniques. All tasks
investigated in section 3.1 were repeated 5 times for all representations measured which have less than 500 dimensions (as
larger representations were prohibitively expensive to train multiple times). Exclusion of representations larger than 500
dimensions meant that the representations investigated for these experiments in repeatability were:

• magpie (88 dimensions)

• CompV ec (119 dimensions)

• Oliynyk (176 dimensions)

• Random Projection (88 dimensions)

• Random Projection (119 dimensions)

• Random Projection (176 dimensions)

Random forests trained using these representations were evaluated with LOCO-CV, kernelised LOCO-CV and a traditional
80%/20% train/test split. By comparing the standard deviations of measurements across different repeats of a task, it is
possible to compare the repeatability of LOCO-CV and kernelised LOCO-CV to that of an 80/20 80%/20% train/test split.
Clustering for LOCO-CV and kernelised LOCO-CV in these experiments was done using magpie representation (as in section
3.1).

In both regression and classification results radial basis function application improved the repeatability of LOCO-CV
(fig. S2, tables S1-S6). While LOCO-CV and kernelised LOCO-CV are both less repeatable than a 80%/20% train/test split,
the decrease in reliability is small enough to not substantially impact the interpretation of results.
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Figure S1: The frequency for which different normalisation methods resulted in the lowest cluster size uneveness (standard
deviation in cluster size), grouped by kernel usage.

(a) (b)

Figure S2: The standard deviation of LOCO-CV, kernelised LOCO-CV, and 80/20 train test split scores for 5 repeats of
a task. The mean of these standard deviations is taken across all tasks and all representations. Tasks tested here are all
those explored in section 3.1, and representations are those explored in section 3.1 which are less than 500 dimensions. (a)
Standard deviation of performance in classification tasks across 5 repeats. Further breakdowns of these data can be seen in
tables S1-S3. (b) Standard deviation of performance in regression tasks across 5 repeats. Further breakdowns of these data
can be seen in tables S4-S6. As r2 is unbounded below 0, results shown here is calculated by excluding and r2 measurement
less than 0.
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task CBFV dimensions accuracy f1 precision recall

x̄ σ x̄ σ x̄ σ x̄ σ

Tc > 10K

magpie 88 0.92 0.0013 0.92 0.0013 0.92 0.0012 0.92 0.0013
CompV ec 119 0.92 0.0019 0.92 0.0019 0.92 0.0019 0.92 0.0019
Oliynyk 176 0.92 0.0011 0.92 0.0011 0.92 0.0011 0.92 0.0011

Random
Projection

88 0.91 0.0016 0.91 0.0016 0.91 0.0016 0.91 0.0016
119 0.91 0.000 67 0.91 0.000 68 0.91 0.0007 0.91 0.000 67
176 0.91 0.0012 0.91 0.0012 0.91 0.0012 0.91 0.0012

GFA

magpie 88 0.88 0.0028 0.88 0.0029 0.88 0.0027 0.88 0.0028
CompV ec 119 0.88 0.0049 0.88 0.005 0.88 0.0049 0.88 0.0049
Oliynyk 176 0.88 0.003 0.88 0.003 0.88 0.003 0.88 0.003

Random
Projection

88 0.87 0.0033 0.87 0.0034 0.87 0.0033 0.87 0.0033
119 0.87 0.004 0.87 0.0042 0.87 0.0039 0.87 0.004
176 0.87 0.0017 0.87 0.0017 0.87 0.0018 0.87 0.0017

HH stability

magpie 88 1.0 0.0 0.99 0.0 1.0 0.0 1.0 0.0
CompV ec 119 0.99 0.000 24 0.99 0.000 41 0.99 0.000 24 0.99 0.000 24
Oliynyk 176 0.99 0.000 45 0.99 0.000 58 0.99 0.000 44 0.99 0.000 45

Random
Projection

88 0.99 0.0 0.99 0.0 0.99 0.0 0.99 0.0
119 0.99 0.0 0.98 0.0 0.99 0.0 0.99 0.0
176 0.99 0.000 24 0.99 0.000 49 0.99 0.000 24 0.99 0.000 24

Table S1: The mean and standard deviation of various metrics of classification tasks across 5 repeats measured using an
80/20 train/test fit. Note that for the HH stability task, the highly unbalanced nature of the dataset results in unusually
repeatable and high performing results.

task CBFV dimensions accuracy f1 precision recall

x̄ σ x̄ σ x̄ σ x̄ σ

Tc > 10K

magpie 88 0.82 0.000 92 0.81 0.0016 0.82 0.0015 0.82 0.000 92
CompV ec 119 0.84 0.000 45 0.83 0.000 24 0.83 0.000 19 0.84 0.000 45
Oliynyk 176 0.82 0.0016 0.80 0.0020 0.82 0.0024 0.82 0.0016

Random
Projection

88 0.64 0.0014 0.53 0.0022 0.64 0.012 0.64 0.0014
119 0.64 0.0012 0.53 0.0014 0.65 0.012 0.64 0.0012
176 0.64 0.0012 0.53 0.0015 0.65 0.014 0.64 0.0012

GFA

magpie 88 0.64 0.011 0.64 0.0081 0.70 0.0046 0.64 0.011
CompV ec 119 0.72 0.0017 0.72 0.0018 0.75 0.0033 0.72 0.0017
Oliynyk 176 0.65 0.0069 0.66 0.0046 0.71 0.0032 0.65 0.0069

Random
Projection

88 0.53 0.0083 0.50 0.0064 0.61 0.0027 0.53 0.0083
119 0.53 0.011 0.49 0.0091 0.62 0.010 0.53 0.011
176 0.52 0.012 0.49 0.010 0.61 0.0057 0.52 0.012

HH stability

magpie 88 0.98 0.000 41 0.98 0.000 36 0.97 0.000 37 0.98 0.000 41
CompV ec 119 0.97 0.000 45 0.97 0.000 38 0.97 0.000 78 0.97 0.000 45
Oliynyk 176 0.98 0.000 39 0.97 0.000 34 0.97 0.000 50 0.98 0.000 39

Random
Projection

88 0.97 0.000 55 0.96 0.000 70 0.95 0.0019 0.97 0.000 55
119 0.97 0.000 48 0.96 0.000 67 0.95 0.0015 0.97 0.000 48
176 0.97 0.000 42 0.96 0.000 57 0.96 0.0017 0.97 0.000 42

Table S2: The mean and standard deviation of various metrics of classification tasks across 5 repeats measured using LOCO-
CV without any kernels
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(a) (b)

(c)

Figure S3: Performance advantage of different CBFVs against Random Projections of composition vectors across different
datasets as measured by cluster size unevenness (standard deviation in cluster size) (a) CBFVs are compared wtih Random
Projections of equal size and a RBF kernel is applied. (b) CBFVs are compared to Random Projection of size 88 with no
kernel applied (c) CBFVs are compared to Random Projection of size 88 with a RBF kernel applied
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task CBFV dimensions accuracy f1 precision recall

x̄ σ x̄ σ x̄ σ x̄ σ

Tc > 10K

magpie 88 0.91 0.000 43 0.91 0.000 43 0.91 0.000 43 0.91 0.000 43
CompV ec 119 0.91 0.000 47 0.91 0.000 47 0.91 0.000 48 0.91 0.000 47
Oliynyk 176 0.91 0.000 59 0.91 0.000 60 0.91 0.000 61 0.91 0.000 59

Random
Projection

88 0.68 0.0019 0.58 0.0028 0.74 0.0097 0.68 0.0019
119 0.68 0.0017 0.58 0.0027 0.74 0.0087 0.68 0.0017
176 0.68 0.0017 0.58 0.0027 0.74 0.0066 0.68 0.0017

GFA

magpie 88 0.88 0.000 58 0.87 0.000 60 0.88 0.000 57 0.88 0.000 58
CompV ec 119 0.88 0.0011 0.88 0.0011 0.88 0.0011 0.88 0.0011
Oliynyk 176 0.88 0.000 72 0.88 0.000 72 0.88 0.000 66 0.88 0.000 72

Random
Projection

88 0.55 0.0054 0.51 0.0039 0.61 0.0056 0.55 0.0054
119 0.54 0.010 0.51 0.0080 0.61 0.0056 0.54 0.010
176 0.53 0.0065 0.51 0.0050 0.61 0.0049 0.53 0.0065

HH stability

magpie 88 0.98 0.000 29 0.98 0.000 34 0.98 0.000 30 0.98 0.000 29
CompV ec 119 0.97 0.000 32 0.97 0.000 34 0.97 0.000 49 0.97 0.000 32
Oliynyk 176 0.98 0.000 43 0.98 0.000 37 0.98 0.000 46 0.98 0.000 43

Random
Projection

88 0.97 0.000 88 0.96 0.0012 0.96 0.0027 0.97 0.000 88
119 0.97 0.000 74 0.95 0.0011 0.95 0.0022 0.97 0.000 74
176 0.97 0.000 80 0.96 0.0012 0.95 0.0029 0.97 0.000 80

Table S3: The mean and standard deviation of various metrics of classification tasks across 5 repeats measured using kernelised
LOCO-CV (using radial basis function kernel)

S3 Further observations on case studies
For each machine learning task investigated we attempted to recreate the representation used in that study, and train a
random forest on this representation to compare to representations investigated in Section 3.1. When recreation proved
infeasible, alternatives have been noted. Full tables of results for each case study are provided, including leave one cluster out
cross validation (LOCO-CV) and kernelised LOCO-CV measurements (tables S7-S17). The featurisation used in K-means
clustering for LOCO-CV and kernelised LOCO-CV measurements was done using magpie representation, as it generally
demonstrated balanced clustering across the datasets and tasks investigated here (fig. 6a), and resulted in more models
learning trends more consistently (fig. 8b).

As noted in the main text, these papers were selected for interesting use of machine learning (ML), not for the choice of
representation which was used in each paper. Several of these case studies mention that representation could be improved
through further feature selection and none make any claims that their representation is advantageous over existing other
representations (such as those discussed examined in section 3.1).

S3.1 Machine learning modelling of superconducting critical temperature (2018)
This study uses data from the Japanese National Institute of Materials Science superconductivity dataset (total training set
size 13077) [7]. They use random forests to predict superconducting critical temperature (Tc) in three contexts:

• Tc: Using a regressor to predict the superconducting critical temperature (Tc) of a material.

• Tc > 10K: Classifying if the Tc of a material is greater than 10 K.

• Tc|(Tc > 10K: Regressing to find Tc given Tc > 10K.

The authors of this study derive a custom CBFV from the magpie package. In recreating all three of the above tasks,
their custom CBFV performs similar to the CBFVs investigated in section 3.1 (tables S7 to S9). This is in line with the
suggestion that a dataset of this size will see little benefit from domain knowledge. Due to limited reproducibility our results
are compared to their results as published, rather than as recreated.
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task CBFV dimensions r2 rmse mae

x̄ σ x̄ σ x̄ σ

Dmax

magpie 88 0.68 0.020 0.97 0.031 0.27 0.0057
CompV ec 119 0.65 0.014 1.0 0.020 0.27 0.0032
Oliynyk 176 0.61 0.018 1.1 0.025 0.29 0.0039

Random
Projection

88 0.56 0.029 1.1 0.037 0.40 0.0069
119 0.63 0.012 1.0 0.017 0.38 0.0057
176 0.61 0.019 1.1 0.027 0.39 0.0060

Egap(DFT)∪
Egap(exptl)

magpie 88 0.77 0.000 93 0.77 0.0016 0.52 0.000 96
CompV ec 119 0.63 0.0011 0.98 0.0015 0.68 0.0015
Oliynyk 176 0.78 0.0012 0.76 0.0021 0.51 0.000 70

Random
Projection

88 0.54 0.0012 1.1 0.0014 0.83 0.0010
119 0.54 0.0012 1.1 0.0014 0.83 0.0012
176 0.56 0.0023 1.1 0.0027 0.81 0.0021

Egap(DFT)

magpie 88 0.77 0.0012 0.79 0.0021 0.52 0.000 76
CompV ec 119 0.66 0.0018 0.96 0.0025 0.66 0.0016
Oliynyk 176 0.78 0.0013 0.78 0.0022 0.51 0.000 58

Random
Projection

88 0.54 0.000 93 1.1 0.0011 0.84 0.0010
119 0.54 0.0015 1.1 0.0018 0.84 0.0019
176 0.56 0.0027 1.1 0.0034 0.82 0.0016

Egap(exptl)

magpie 88 0.84 0.0032 0.63 0.0065 0.43 0.0023
CompV ec 119 0.68 0.0052 0.91 0.0074 0.56 0.0044
Oliynyk 176 0.84 0.0035 0.64 0.0069 0.43 0.0021

Random
Projection

88 0.51 0.0060 1.1 0.0068 0.68 0.0045
119 0.58 0.0069 1.0 0.0085 0.64 0.0075
176 0.61 0.0059 1.0 0.0076 0.65 0.0036

Egap(oxides)

magpie 88 0.71 0.0054 1.3 0.012 0.94 0.0081
CompV ec 119 0.36 0.019 1.9 0.027 1.4 0.022
Oliynyk 176 0.76 0.0051 1.1 0.012 0.86 0.012

Random
Projection

88 0.35 0.015 1.9 0.021 1.5 0.012
119 0.27 0.011 2.0 0.014 1.6 0.016
176 0.35 0.0099 1.9 0.014 1.5 0.019

Tc|(Tc > 10K)

magpie 88 0.87 0.000 84 10 0.034 6.3 0.039
CompV ec 119 0.86 0.0016 11 0.061 6.4 0.045
Oliynyk 176 0.88 0.000 34 10 0.014 6.2 0.028

Random
Projection

88 0.84 0.0018 12 0.064 7.0 0.050
119 0.86 0.0010 11 0.040 6.8 0.012
176 0.85 0.0016 11 0.061 6.8 0.041

Tc

magpie 88 0.83 0.0013 11 0.041 5.4 0.018
CompV ec 119 0.82 0.000 79 11 0.025 5.2 0.015
Oliynyk 176 0.83 0.000 47 11 0.015 5.3 0.021

Random
Projection

88 0.81 0.000 97 12 0.030 5.9 0.024
119 0.81 0.0013 12 0.040 5.9 0.019
176 0.80 0.0018 12 0.055 5.9 0.018

∆Tx

magpie 88 0.60 0.0049 14 0.086 11 0.040
CompV ec 119 0.65 0.011 13 0.20 10 0.19
Oliynyk 176 0.60 0.0058 14 0.10 11 0.044

Random
Projection

88 0.67 0.0060 13 0.12 9.9 0.14
119 0.67 0.0069 13 0.13 10 0.18
176 0.65 0.0063 13 0.12 10 0.12

Table S4: The mean (x̄) and standard deviation (σ) of r2, mean squared error (mse), root mean squared error (rmse) and
mean absolute error (mae) of regression tasks across 5 repeats measured using an 80/20 train/test split. Unlike tables S5
and S6, none of the r2 values found using this method were less than 0.
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task CBFV dimensions
r2 rmse mae

x̄ σ x̄ σ x̄ σ

Dmax

magpie 88 −15 2.1 0.018 1.2 0.015
CompV ec 119 −7.4 2.0 0.027 0.78 0.013
Oliynyk 176 −21 2.6 0.039 1.6 0.021

Random
Projection

88 −510 4.6 0.13 3.7 0.12
119 −210 4.2 0.21 3.4 0.2
176 −240 4.2 0.18 3.4 0.18

Egap(DFT)∪
Egap(exptl)

magpie 88 0.53 0.000 36 1.1 0.000 48 0.84 0.000 48
CompV ec 119 0.38 0.000 46 1.3 0.000 46 0.93 0.0007
Oliynyk 176 0.56 0.000 65 1.1 0.000 86 0.8 0.000 35

Random
Projection

88 −0.12 1.5 0.0032 1.2 0.0023
119 −0.026 1.5 0.0039 1.2 0.0031
176 −0.05 1.5 0.0024 1.2 0.0013

Egap(DFT)

magpie 88 0.54 0.000 61 1.1 0.000 84 0.83 0.000 87
CompV ec 119 0.38 0.000 36 1.3 0.000 33 0.93 0.000 57
Oliynyk 176 0.57 0.000 65 1.1 0.000 92 0.8 0.001

Random
Projection

88 −0.13 1.5 0.004 1.2 0.0027
119 −0.022 1.5 0.0059 1.2 0.0044
176 −0.061 1.5 0.0054 1.2 0.0037

Egap(exptl)

magpie 88 0.52 0.0045 0.98 0.0034 0.72 0.0027
CompV ec 119 0.28 0.0033 1.2 0.000 64 0.79 0.0014
Oliynyk 176 0.6 0.0032 0.89 0.0024 0.67 0.0016

Random
Projection

88 −0.6 1.4 0.008 1.1 0.0057
119 −0.54 1.5 0.0076 1.2 0.0055
176 −1.2 1.6 0.034 1.2 0.034

Egap(oxides)

magpie 88 0.49 0.007 1.5 0.0058 1.2 0.0052
CompV ec 119 0.3 0.0056 1.8 0.0057 1.4 0.0054
Oliynyk 176 0.53 0.0046 1.4 0.004 1.1 0.0027

Random
Projection

88 0.22 0.018 2.0 0.021 1.6 0.019
119 0.19 0.011 2.1 0.011 1.7 0.01
176 0.26 0.0041 2.0 0.0051 1.6 0.0064

Tc|(Tc > 10K)

magpie 88 0.45 0.026 14 0.048 9.3 0.053
CompV ec 119 0.45 0.025 13 0.087 8.3 0.07
Oliynyk 176 0.48 0.014 13 0.043 8.8 0.03

Random
Projection

88 −16 21 0.29 17 0.28
119 −21 23 0.24 19 0.15
176 −32 22 0.29 19 0.3

Tc

magpie 88 0.39 0.0059 13 0.089 7.9 0.054
CompV ec 119 0.48 0.0033 12 0.046 6.9 0.039
Oliynyk 176 0.23 0.0096 13 0.07 8.2 0.038

Random
Projection

88 −1.3 17 0.18 13 0.12
119 −0.97 16 0.14 13 0.12
176 −0.99 17 0.11 13 0.07

∆Tx

magpie 88 −0.31 22 0.12 18 0.1
CompV ec 119 −0.092 21 0.15 17 0.12
Oliynyk 176 −0.19 21 0.13 17 0.098

Random
Projection

88 −1.7 27 0.21 22 0.16
119 −0.52 23 0.12 18 0.063
176 −0.66 23 0.17 19 0.14

Table S5: The mean (x̄) and standard deviation (σ) of r2, mean squared error (mse), root mean squared error (rmse) and
mean absolute error (mae) of regression tasks across 5 repeats measured using LOCO-CV. As r2 has no lower bound, standard
deviations of r2 were not included when calculating the standard deviation, where none of the repeats found an r2 > 0, no
standard deviation has been reported. 7



task CBFV dimensions r2 rmse mae

x̄ σ x̄ σ x̄ σ

Dmax

magpie 88 0.63 0.012 1.4 0.021 0.29 0.000 81
CompV ec 119 0.6 0.0075 1.4 0.0078 0.27 0.0021
Oliynyk 176 0.58 0.01 1.4 0.015 0.29 0.000 75

Random
Projection

88 −120 4.6 0.17 3.5 0.1
119 −61 4.1 0.18 3.1 0.099
176 −57 4.0 0.066 3.1 0.03

Egap(DFT)∪
Egap(exptl)

magpie 88 0.77 0.000 75 0.78 0.0012 0.54 0.000 41
CompV ec 119 0.71 0.001 0.87 0.0014 0.58 0.000 49
Oliynyk 176 0.77 0.000 44 0.77 0.000 69 0.52 0.000 39

Random
Projection

88 0.045 0.013 1.4 0.0084 1.1 0.0075
119 0.1 0.0083 1.4 0.0085 1.1 0.0069
176 0.083 0.0081 1.4 0.0056 1.1 0.0059

Egap(DFT)

magpie 88 0.77 0.000 13 0.78 0.0002 0.53 0.000 22
CompV ec 119 0.72 0.000 34 0.87 0.000 49 0.57 0.000 21
Oliynyk 176 0.78 0.000 25 0.76 0.000 42 0.52 0.000 34

Random
Projection

88 0.04 0.0032 1.4 0.0074 1.1 0.0071
119 0.11 0.01 1.4 0.0084 1.1 0.0082
176 0.083 0.0087 1.4 0.0069 1.1 0.0069

Egap(exptl)

magpie 88 0.81 0.0014 0.65 0.0025 0.43 0.000 97
CompV ec 119 0.69 0.0022 0.83 0.0022 0.51 0.000 69
Oliynyk 176 0.81 0.000 78 0.64 0.0019 0.42 0.000 94

Random
Projection

88 −0.38 1.4 0.0054 1.1 0.0062
119 −0.43 1.5 0.01 1.1 0.01
176 −0.6 1.5 0.013 1.1 0.014

Egap(oxides)

magpie 88 0.72 0.004 1.2 0.0067 0.91 0.0054
CompV ec 119 0.51 0.0032 1.6 0.0049 1.2 0.0038
Oliynyk 176 0.75 0.0024 1.2 0.0046 0.87 0.0039

Random
Projection

88 0.24 0.011 2.0 0.021 1.6 0.022
119 0.21 0.012 2.0 0.022 1.6 0.018
176 0.26 0.015 2.0 0.024 1.6 0.02

Tc|(Tc > 10K)

magpie 88 0.88 0.0003 10 0.012 6.4 0.0091
CompV ec 119 0.87 0.0009 10 0.034 6.4 0.021
Oliynyk 176 0.88 0.000 76 10 0.03 6.3 0.013

Random
Projection

88 −16 21 0.12 17 0.074
119 −22 24 0.41 20 0.37
176 −39 23 0.35 19 0.26

Tc

magpie 88 0.83 0.000 83 11 0.028 5.6 0.013
CompV ec 119 0.83 0.000 62 11 0.021 5.3 0.011
Oliynyk 176 0.84 0.000 77 11 0.026 5.5 0.0092

Random
Projection

88 −1.4 17 0.11 13 0.08
119 −0.56 15 0.07 12 0.054
176 −0.92 18 0.14 13 0.077

∆Tx

magpie 88 0.6 0.009 14 0.11 9.9 0.057
CompV ec 119 0.64 0.011 14 0.11 9.3 0.057
Oliynyk 176 0.62 0.011 14 0.14 9.9 0.057

Random
Projection

88 −1.5 27 0.18 22 0.18
119 −0.5 23 0.22 18 0.21
176 −0.68 23 0.11 19 0.13

Table S6: The mean (x̄) and standard deviation (σ) of r2, mean squared error (mse), root mean squared error (rmse) and
mean absolute error (mae) of regression tasks across 5 repeats measured using LOCO-CV with radial basis function kernel.
As r2 has no lower bound, values of r2 lower than 0 were excluded when calculating σ. Where none of the repeats found an
r2 > 0, no σ has been reported. 8



Table S7: Full table of results for the task of predicting Tc. Clusterings for LOCO-CV were done withmagpiefeaturisation,
and kernelised LOCO-CV was magpie featurisation with RBF kernel.

80%/20% train/test split
CBFV dimensions r2 mse rmse mae

magpie 88 0.83 120 11.0 5.37
CompV ec 119 0.82 125 11.2 5.17
Stanev 145 0.88
Oliynyk 176 0.83 122 11.1 5.33
fractional 476 0.82 130 11.4 5.24
RANDOM_200 800 0.83 121 11.0 5.47
JARV IS 1752 0.83 117 10.8 5.21

Random Projection

88 0.81 134 11.6 5.88
119 0.81 132 11.5 5.86
176 0.80 140 11.8 5.97
476 0.81 132 11.5 5.78
800 0.82 129 11.4 5.74
1752 0.82 128 11.3 5.71

LOCO-CV scores
CBFV dimensions r2 mse rmse mae

magpie 88 0.39 199 12.7 7.89
CompV ec 119 0.48 192 12.1 6.91
Oliynyk 176 0.25 204 13.0 8.18
fractional 476 0.49 180 11.9 6.87
RANDOM_200 800 0.49 177 11.9 7.28
JARV IS 1752 0.44 197 12.4 7.77

Kernelised LOCO-CV scores
CBFV dimensions r2 mse rmse mae

magpie 88 0.83 127 11.2 5.59
CompV ec 119 0.83 123 11.1 5.32
Oliynyk 176 0.84 120 10.9 5.50
fractional 476 0.84 119 10.9 5.25
RANDOM_200 800 0.84 119 10.9 5.60
JARV IS 1752 0.85 114 10.7 5.36
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Table S8: Full table of results for the task of predicting Tc|(Tc > 10 K). Clusterings for LOCO-CV were done with magpie
featurisation, and kernelised LOCO-CV was magpie featurisation with RBF kernel.

80%/20% train/test split
CBFV dimensions r2 mse rmse mae

magpie 88 0.87 109 10.4 6.36
CompV ec 119 0.86 118 10.9 6.44
Stanev 145 0.88
Oliynyk 176 0.88 99.3 9.96 6.24
fractional 476 0.87 108 10.4 6.26
RANDOM_200 800 0.87 109 10.4 6.47
JARV IS 1752 0.88 103 10.1 6.25

Random Projection

88 0.84 134 11.6 7.05
119 0.86 116 10.8 6.76
176 0.85 124 11.1 6.82
476 0.87 109 10.5 6.49
800 0.86 113 10.6 6.66
1752 0.86 119 10.9 6.70

LOCO-CV scores
CBFV dimensions r2 mse rmse mae

magpie 88 0.45 222 13.8 9.29
CompV ec 119 0.47 198 12.9 8.27
Oliynyk 176 0.47 195 13.0 8.84
fractional 476 0.50 183 12.3 8.01
RANDOM_200 800 0.27 214 13.8 9.33
JARV IS 1752 0.44 197 13.1 8.87

Kernelised LOCO-CV scores
CBFV dimensions r2 mse rmse mae

magpie 88 0.88 105 10.2 6.42
CompV ec 119 0.88 108 10.4 6.36
Oliynyk 176 0.88 103 10.1 6.35
fractional 476 0.88 103 10.1 6.22
RANDOM_200 800 0.87 109 10.4 6.57
JARV IS 1752 0.89 98.7 9.92 6.24
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Table S9: Full table of results for the task of predicting Tc > 10 K. Clusterings for LOCO-CV were done with magpie
featurisation, and kernelised LOCO-CV was magpie featurisation with RBF kernel.

80%/20% train/test split
CBFV dimensions accuracy f1 precision recall

magpie 88 0.92 0.92 0.92 0.92
CompV ec 119 0.92 0.92 0.92 0.92
Stanev 145 0.91 0.89 0.87 0.92
Oliynyk 176 0.92 0.92 0.92 0.92
fractional 476 0.92 0.92 0.92 0.92
RANDOM_200 800 0.92 0.92 0.92 0.92
JARV IS 1752 0.92 0.92 0.92 0.92

Random Projection

88 0.91 0.91 0.91 0.91
119 0.91 0.91 0.91 0.91
176 0.91 0.91 0.91 0.91
476 0.91 0.91 0.91 0.91
800 0.91 0.91 0.91 0.91
1752 0.91 0.91 0.91 0.91

LOCO-CV scores
CBFV dimensions accuracy f1 precision recall

magpie 88 0.82 0.81 0.82 0.82
CompV ec 119 0.84 0.83 0.84 0.84
Oliynyk 176 0.82 0.80 0.81 0.82
fractional 476 0.83 0.82 0.83 0.83
RANDOM_200 800 0.82 0.80 0.81 0.82
JARV IS 1752 1.0 1.0 1.0 1.0

Kernelised LOCO-CV scores
CBFV dimensions accuracy f1 precision recall

magpie 88 0.91 0.91 0.91 0.91
CompV ec 119 0.91 0.91 0.91 0.91
Oliynyk 176 0.91 0.91 0.91 0.91
fractional 476 0.91 0.91 0.91 0.91
RANDOM_200 800 0.91 0.91 0.91 0.91
JARV IS 1752 1.0 1.0 1.0 1.0

Table S10: Full table of results for the task of predicting HH stability. Clusterings for LOCO-CV were done with magpie
featurisation, and kernelised LOCO-CV was magpie featurisation with RBF kernel.

80%/20% train/test split
CBFV dimensions accuracy f1 precision recall

LeGrain 51 0.99 0.99 0.99 0.99
magpie 88 1.0 0.99 1.0 1.0
CompV ec 119 0.99 0.99 0.99 0.99
Oliynyk 176 0.99 0.99 0.99 0.99
fractional 476 0.99 0.99 0.99 0.99
RANDOM_200 800 0.99 0.99 0.99 0.99
JARV IS 1752 1.0 1.0 1.0 1.0

Random Projection

88 0.99 0.99 0.99 0.99
119 0.99 0.98 0.99 0.99
176 0.99 0.99 0.99 0.99
476 0.99 0.98 0.99 0.99
800 0.99 0.99 0.99 0.99
1752 0.99 0.98 0.99 0.99
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S3.2 Materials screening for the discovery of new half-Heuslers: Machine learning versus
ab initio Methods

This paper uses random forests to predict whether a half-heusler is stable or unstable using a custom made descriptor
containing structural information of a compound [5]. The dataset they use contains 164 stable vs 11022 unstable half-
heuslers which introduces some difficulties when applying LOCO-CV.

A dataset which is overwhelmingly one class is no longer suitable for LOCO-CV measurements as it is possible for all
of the outlier class will lie in one cluster, which breaks many metric formulae which require all classes to have at least one
example to avoid division by zero. For example in binary classification the specificity can be measured by

Specificity =
tn

N

where tn is the number of true negative predictions and N is the total number of negative observations in the dataset. Where
N = 0, even if you were to tweak the formula to stop division by zero (such as by adding a small number to the denominator),
such a metric would be meaningless. We found that LOCO-CV failed to run due to all of the classes ending up in one cluster
for all featurisation methods.

While LOCO-CV will not allow for exptrapolatory measures of algorithms trained on these data, given a random split it
is highly unlikely that all stable heuslers end up in test dataset. As such, we measured performance of our chosen CBFVs for
comparison to the featurisation used in this case study. F1 score and precision were considered the most important metrics
for success, as the unbalanced nature of the dataset makes accuracy and recall are approximately 1 for all models measured.
CBFVs with domain knowledge resulted in more precise predictions than both the structural representation used by in this
paper and representations without domain knowledge (table S10).

This is in contrast to previous suggestions that there would be little benefit for domain knowledge in CBFVs for a dataset
of this size [6], however, those findings had no stipulations on dataset balance, which likely affected results. CBFVs with
domain knowledge outperforming the representation used in this case study is surprising given that CBFVs are made using
no structural information, suggesting that just because a representation should contain more knowledge does not mean such
a representation will outperform others without such information.

S3.3 Data-driven discovery of photoactive quaternary oxides using first-principles machine
learning

This case study predicts band gaps found in the Computational Materials Repository database, using the 799 oxides as
training/test data [2]. The representation used in the paper is a CBFV of 148 features generated with matminer, most (132)
of which are derived from the magpie descriptors, with the rest constituting information on the highest occupied molecular
orbital and lowest unoccupied molecular orbital, norms of stoichiometric attributes, ionic properties (including maximum and
average ionic character between two atoms), and an estimation of absolute position of band centre. Some of these features
are repetitions of those in the magpie feature set for example the average number of s, p, d, and f valence electrons. The
aggregation functions implemented included the mean mean absolute deviation and modal value for magpie descriptors as
well as the mean, sum, range, and variance of magpie descriptors which are used in previous work (and the main text of this
work).

The representation used in this study resulted in better predictions than those found using no domain knowledge, perform-
ing equivalently to other CBFVs with domain knowledge, and performing significantly better in LOCO-CV measurements
(table S11). This would fit the suggestion that inclusion of domain knowledge improves performance for ML methods when
dataset size is smaller than 1000. It is notable that the representation used in this study did not outperform magpie as
implemented for this and previous work[6]. This suggests that including the aggregation functions mode and mean absolute
deviation of a feature does not meaningfully impact performance.

S3.4 A machine learning approach for engineering bulk metallic glass alloys
This study uses ensemble learning methods for three separate prediction tasks related to the engineering of bulk metallic
glass alloys (BMG) [9]. The following are predicted:

• Glass Forming Ability (GFA): predicting BMG’s ability to exist in an amorphous state.

• Dmax: Predicting the critical casting diameter of a BMG.

• ∆Tx: The supercoooled liquid range of a BMG.

The work uses a CBFV derived from the magpie descriptors with a total of more than 200 features, the exact number varying
depending on prediction task. This is compared to the originally proposed 145 features [8] and the variant we use with 88
features [6]. This is applied to custom datasets collected from 41 different papers and one handbook, they used subsets of
these for each task as GFA, Dmax, and ∆Tx were not available for all compounds.
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Table S11: Full table of results for the task of predicting Egap(oxides). Clusterings for LOCO-CV were done with magpie
featurisation, and kernelised LOCO-CV was magpie featurisation with RBF kernel.

80%/20% train/test split
CBFV dimensions r2 mse rmse mae

magpie 88 0.71 1.57 1.25 0.934
CompV ec 119 0.37 3.49 1.87 1.38
Davies 148 0.82 0.990 0.995 0.776
Oliynyk 176 0.77 1.26 1.12 0.854
fractional 476 0.45 3.05 1.75 1.32
RANDOM_200 800 0.42 3.22 1.79 1.41
JARV IS 1752 0.70 1.68 1.30 0.945

Random Projection

88 0.34 3.65 1.91 1.48
119 0.27 4.01 2.00 1.58
176 0.36 3.54 1.88 1.46
476 0.37 3.46 1.86 1.42
800 0.35 3.57 1.89 1.44
1752 0.31 3.80 1.95 1.47

LOCO-CV scores
CBFV dimensions r2 mse rmse mae

magpie 88 0.49 2.29 1.47 1.16
CompV ec 119 0.31 3.30 1.78 1.39
Oliynyk 176 0.53 2.05 1.40 1.10
fractional 476 0.27 3.45 1.83 1.43
RANDOM_200 800 0.23 3.51 1.85 1.47
JARV IS 1752 0.50 2.19 1.47 1.16
Davies 148 0.58 1.79 1.32 1.01

Kernelised LOCO-CV scores
CBFV dimensions r2 mse rmse mae

magpie 88 0.73 1.44 1.20 0.908
CompV ec 119 0.52 2.56 1.59 1.17
Oliynyk 176 0.75 1.34 1.15 0.868
fractional 476 0.52 2.55 1.59 1.18
RANDOM_200 800 0.52 2.57 1.60 1.25
JARV IS 1752 0.72 1.47 1.21 0.912
Davies 148 0.76 1.25 1.11 0.838
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Table S12: Full table of results for the task of predicting ∆Tx. Clusterings for LOCO-CV were done withmagpie featurisation,
and kernelised LOCO-CV was magpie featurisation with RBF kernel.

80%/20% train/test split
CBFV dimensions r2 mse rmse mae

magpie 88 0.61 191 13.8 10.8
CompV ec 119 0.64 177 13.3 10.2
Oliynyk 176 0.60 196 14.0 10.8
Ward 213 0.68 159 12.6 9.80
fractional 476 0.58 209 14.4 11.1
RANDOM_200 800 0.59 202 14.2 11.1
JARV IS 1752 0.61 193 13.9 10.8

Random Projection

88 0.68 160 12.6 9.93
119 0.65 172 13.1 10.3
176 0.64 178 13.4 10.5
476 0.67 163 12.8 10.1
800 0.67 164 12.8 9.99
1752 0.68 158 12.6 9.96

LOCO-CV scores
CBFV dimensions r2 mse rmse mae

magpie 88 -0.29 524 22.2 17.8
CompV ec 119 -0.11 450 20.9 16.8
Oliynyk 176 -0.20 478 21.4 17.3
Ward 213 -0.020 418 19.9 16.0
fractional 476 -0.19 471 21.5 16.9
RANDOM_200 800 -0.14 454 20.8 16.9
JARV IS 1752 -0.17 464 21.1 16.8

Kernelised LOCO-CV scores
CBFV dimensions r2 mse rmse mae

magpie 88 0.59 212 14.4 9.99
CompV ec 119 0.63 195 13.8 9.45
Oliynyk 176 0.61 202 14.1 9.94
Ward 213 0.65 184 13.4 9.29
fractional 476 0.60 208 14.3 9.92
RANDOM_200 800 0.60 212 14.4 10.2
JARV IS 1752 0.61 205 14.2 10.0
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Table S13: Full table of results for the task of predicting Dmax. Clusterings for LOCO-CV were done with magpie featuri-
sation, and kernelised LOCO-CV was magpie featurisation with RBF kernel.

80%/20% train/test split
CBFV dimensions r2 mse rmse mae

magpie 88 0.69 0.904 0.951 0.271
CompV ec 119 0.64 1.06 1.03 0.271
Oliynyk 176 0.60 1.17 1.08 0.289
Ward 213 0.65 1.03 1.02 0.282
fractional 476 0.61 1.12 1.06 0.286
RANDOM_200 800 0.69 0.908 0.953 0.277
JARV IS 1752 0.55 1.31 1.15 0.308

Random Projection

88 0.57 1.29 1.14 0.407
119 0.64 1.09 1.04 0.389
176 0.62 1.13 1.06 0.377
476 0.56 1.31 1.14 0.397
800 0.59 1.21 1.10 0.399
1752 0.61 1.16 1.08 0.385

LOCO-CV scores
CBFV dimensions r2 mse rmse mae

magpie 88 -15. 6.46 2.14 1.22
CompV ec 119 -7.4 5.39 1.94 0.780
Oliynyk 176 -20. 8.49 2.54 1.55
Ward 213 -3.2 3.75 1.73 0.470
fractional 476 -9.1 5.21 1.92 0.758
RANDOM_200 800 -27. 10.9 2.77 1.54
JARV IS 1752 -50. 15.6 3.27 2.07

Kernelised LOCO-CV scores
CBFV dimensions r2 mse rmse mae

magpie 88 0.62 2.11 1.37 0.292
CompV ec 119 0.59 2.47 1.44 0.276
Oliynyk 176 0.57 2.45 1.46 0.299
Ward 213 0.64 2.06 1.34 0.273
fractional 476 0.61 2.32 1.40 0.285
RANDOM_200 800 0.57 2.54 1.47 0.308
JARV IS 1752 0.57 2.50 1.47 0.311
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Table S14: Full table of results for the task of predicting GFA. Clusterings for LOCO-CV were done withmagpie featurisation,
and kernelised LOCO-CV was magpie featurisation with RBF kernel.

80%/20% train/test split
CBFV dimensions accuracy f1 precision recall

magpie 88 0.88 0.88 0.88 0.88
CompV ec 119 0.88 0.88 0.88 0.88
Oliynyk 176 0.88 0.88 0.88 0.88
Ward 213 0.89 0.89 0.89 0.89
fractional 476 0.87 0.87 0.87 0.87
RANDOM_200 800 0.87 0.87 0.87 0.87
JARV IS 1752 0.89 0.89 0.89 0.89

Random Projection

119 0.87 0.86 0.87 0.87
176 0.87 0.87 0.87 0.87
476 0.87 0.87 0.87 0.87
800 0.87 0.87 0.87 0.87
1752 0.87 0.87 0.87 0.87

LOCO-CV scores
CBFV dimensions accuracy f1 precision recall

magpie 88 0.64 0.64 0.70 0.64
CompV ec 119 0.73 0.72 0.74 0.73
Oliynyk 176 0.65 0.66 0.71 0.65
Ward 213 0.74 0.74 0.77 0.74
fractional 476 0.66 0.66 0.72 0.66
RANDOM_200 800 0.63 0.61 0.70 0.63
JARV IS 1752 0.56 0.57 0.71 0.56

Kernelised LOCO-CV scores
CBFV dimensions accuracy f1 precision recall

magpie 88 0.88 0.88 0.88 0.88
CompV ec 119 0.88 0.88 0.88 0.88
Oliynyk 176 0.88 0.88 0.88 0.88
Ward 213 0.88 0.88 0.88 0.88
fractional 476 0.87 0.87 0.87 0.87
RANDOM_200 800 0.87 0.87 0.87 0.87
JARV IS 1752 0.88 0.88 0.88 0.88
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Table S15: Full table of results for the task of predicting Egap(exptl). Clusterings for LOCO-CV were done with magpie
featurisation, and kernelised LOCO-CV was magpie featurisation with RBF kernel.

80%/20% train/test split
CBFV dimensions r2 mse rmse mae

magpie 88 0.85 0.394 0.628 0.433
CompV ec 119 0.68 0.829 0.910 0.558
Oliynyk 176 0.85 0.397 0.630 0.422
fractional 476 0.75 0.633 0.796 0.513
RANDOM_200 800 0.63 0.947 0.973 0.575
JARV IS 1752 0.85 0.394 0.628 0.421

Random Projection

88 0.51 1.27 1.13 0.680
119 0.57 1.11 1.05 0.647
176 0.62 0.986 0.993 0.639
476 0.59 1.06 1.03 0.623
800 0.61 1.00 1.00 0.619
1752 0.60 1.04 1.02 0.623

LOCO-CV scores
CBFV dimensions r2 mse rmse mae

magpie 88 0.52 0.982 0.978 0.721
CompV ec 119 0.32 1.40 1.17 0.814
Oliynyk 176 0.60 0.810 0.892 0.673
fractional 476 0.35 1.33 1.14 0.807
RANDOM_200 800 0.38 1.29 1.12 0.828
JARV IS 1752 0.56 0.899 0.937 0.687

Kernelised LOCO-CV scores
CBFV dimensions r2 mse rmse mae

magpie 88 0.81 0.420 0.645 0.434
CompV ec 119 0.66 0.765 0.871 0.535
Oliynyk 176 0.81 0.416 0.641 0.424
fractional 476 0.71 0.648 0.802 0.501
RANDOM_200 800 0.64 0.825 0.904 0.566
JARV IS 1752 0.82 0.395 0.626 0.418

When recreating these tasks with RFs rather than the ensemble learning methods used here, in regression tasks (Dmax and
∆Tx prediction), marginally outperform the representations we investigate in section 3.1 in some metrics (table tables S12
and S13). The performance difference between the representation used in this work and the other CBFVs investigated (both
with and without domain knowledge) was significantly smaller in theDmax dataset. This fits previous findings that specialised
domain knowledge becomes less important as dataset size increases [6], as the Dmax training dataset size was almost an order
of magnitude larger than that of the ∆Tx (4725 and 497 respectively). Regardless of the CBFV used all RFs failed to predict
reliably in LOCO-CV, suggesting an RF is not suitable for extrapolation in this task (tables S12 and S13).

In recreation of the GFA classification task, the representation used in this study performed similarly to other CBFV’s
investigated (table S14). This fits with the hypothesis that for larger datasets CBFV domain knowledge becomes less
important with size as the training dataset was size 5053.

S3.5 Extracting knowledge from DFT: Experimental band gap predictions through ensem-
ble learning

This work focuses on the use of neural networks to predict DFT calculated band gaps and transferring this knowledge to
retrain them on a smaller set of experimental measurements, finding the transfer learning to be advantageous [4]. They use
magpie featurisation on DFT data extracted from the Materials project and AFLOW as well as experimental data compiled
in previous work [3][1][10].

As the transfer learning approach used in the case study is not applicable to RFs, in recreating this case study we
considered this to be 3 separate datasets:

• Egap(DFT): Predicting the band gap of materials calculated using DFT.
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Table S16: Full table of results for the task of predicting Egap(DFT). Clusterings for LOCO-CV were done with magpie
featurisation, and kernelised LOCO-CV was magpie featurisation with RBF kernel.

80%/20% train/test split
CBFV dimensions r2 mse rmse mae

magpie 88 0.77 0.621 0.788 0.523
CompV ec 119 0.66 0.922 0.960 0.663
Oliynyk 176 0.78 0.605 0.778 0.513
fractional 476 0.71 0.790 0.889 0.552
RANDOM_200 800 0.70 0.819 0.905 0.616
JARV IS 1752 0.79 0.572 0.756 0.502

Random Projection

88 0.54 1.23 1.11 0.841
119 0.54 1.23 1.11 0.839
176 0.56 1.18 1.09 0.819
476 0.59 1.11 1.05 0.796
800 0.60 1.09 1.04 0.790
1752 0.61 1.04 1.02 0.769

LOCO-CV scores
CBFV dimensions r2 mse rmse mae

magpie 88 0.54 1.19 1.09 0.833
CompV ec 119 0.32 1.77 1.32 0.988
Oliynyk 176 0.57 1.12 1.05 0.803
fractional 476 0.40 1.56 1.24 0.922
RANDOM_200 800 0.42 1.51 1.22 0.953
JARV IS 1752 0.58 1.08 1.03 0.795

Kernelised LOCO-CV scores
CBFV dimensions r2 mse rmse mae

magpie 88 0.77 0.608 0.779 0.533
CompV ec 119 0.63 0.982 0.991 0.686
Oliynyk 176 0.78 0.584 0.764 0.520
fractional 476 0.73 0.708 0.841 0.561
RANDOM_200 800 0.71 0.763 0.873 0.634
JARV IS 1752 0.79 0.556 0.745 0.510
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Table S17: Full table of results for the task of predicting Egap(DFT) ∪ Egap(exptl). Clusterings for LOCO-CV were done
with magpie featurisation, and kernelised LOCO-CV was magpie featurisation with RBF kernel.

80%/20% train/test split
CBFV dimensions r2 mse rmse mae

magpie 88 0.77 0.602 0.776 0.524
CompV ec 119 0.63 0.955 0.977 0.673
Oliynyk 176 0.78 0.581 0.762 0.513
fractional 476 0.74 0.679 0.824 0.551
RANDOM_200 800 0.73 0.728 0.853 0.614
JARV IS 1752 0.79 0.555 0.745 0.504

Random Projection

88 0.54 1.20 1.10 0.834
119 0.54 1.20 1.10 0.834
176 0.56 1.15 1.07 0.812
476 0.58 1.08 1.04 0.788
800 0.59 1.07 1.03 0.779
1752 0.60 1.03 1.02 0.765

LOCO-CV scores
CBFV dimensions r2 mse rmse mae

magpie 88 0.53 1.20 1.09 0.840
CompV ec 119 0.32 1.76 1.32 0.986
Oliynyk 176 0.56 1.13 1.06 0.805
fractional 476 0.39 1.56 1.24 0.925
RANDOM_200 800 0.42 1.50 1.22 0.950
JARV IS 1752 0.58 1.09 1.04 0.797

Kernelised LOCO-CV scores
CBFV dimensions r2 mse rmse mae

magpie 88 0.76 0.613 0.783 0.537
CompV ec 119 0.62 0.981 0.990 0.686
Oliynyk 176 0.77 0.592 0.769 0.524
fractional 476 0.72 0.721 0.849 0.567
RANDOM_200 800 0.70 0.775 0.880 0.635
JARV IS 1752 0.78 0.567 0.753 0.515
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• Egap(exptl): Predicting the band gap of materials measured experimentally.

• Egap(DFT)∪Egap(exptl): Predicting the band gap of a dataset consisting of both DFT calculated and experimentally
measured band gaps.

Experiments on which CBFV is most effective on these datasets showed that datasets Egap(exptl) and Egap(DFT)∪Egap(exptl)
yielded similar results, which is logical as they are very similar datasets. In these datasets domain knowledge based CBFVs
outperformed those without domain knowledge, with JARV IS slightly outperforming all other CBFVs(tables S16 and S17).

The larger datasets saw the performance difference caused by different CBFVs become smaller with the range of r2 between
different CBFVs becoming0.050 smaller (the range was 0.16, 0.15, and 0.21 in the datasets 1, 2, and 3 respectively). While
a dataset size increase usually sees the benefit of domain knowledge decrease, here the decrease of that benefit is less. Here
datasets of more than 35,000 compounds still showing a notable benefit to domain knowledge.

We also present a full tables of results this dataset (tables S15 to S17)
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