Random Projections and kernelised leave one cluster out cross validation: Universal baselines and evaluation tools for supervised machine learning of material properties: Supporting information

Samantha Durdy Michael Gaultois Vladimir Gusev Danushka Bollegala Matthew J. Rosseinsky

S1 Normalising inputs for kernel methods

Various normalisation methods were tested in order to justify those used in the results reported. As skewed χ^2 and additive χ^2 are only well defined for a positive input, data was scaled between 0 and 1 using min-max normalisation before use with these functions.

When performing K-means clustering with either the radial basis function (RBF) or no kernel method at all (the identity function), the following normalisation methods were considered:

- *l2*: l2 normalisation.
- min-max -1:1: Min-max normalisation to scale data between -1 and 1.
- min-max 0:1: Min-max normalisation to scale data between 0 and 1.
- *standard*: Standardisation of each dimension to mean 0 and unit variance.
- none: No normalisation method.

Every dataset tested in sections 3.2 and 3.3 was normalised using each normalisation method. Normalised data were then used as input to RBF and the identity function, the resulting data was the clustered using K-means clustering (K used between 2 and 10 inclusive). For each kernel, dataset, and value of K, the normalisation method which resulted in the lowest standard deviation between cluster sizes (cluster size unevenness) was recorded. Normalisation methods which most frequently results in the lowest cluster size uneveness were used in the results reported in the main text. For RBF no normalisation was used, and when testing without a kernel data was scaled between -1 and 1 using min-max scaling (fig. S1).

S2 Experiments in repeatability

As the k-means clustering part of LOCO-CV (and kernelised LOCO-CV) is non-deterministic, experiments were carried out to investigate whether this would significantly impact the repeatability metrics taken using these techniques. All tasks investigated in section 3.1 were repeated 5 times for all representations measured which have less than 500 dimensions (as larger representations were prohibitively expensive to train multiple times). Exclusion of representations larger than 500 dimensions meant that the representations investigated for these experiments in repeatability were:

- magpie (88 dimensions)
- CompVec (119 dimensions)
- Oliynyk (176 dimensions)
- Random Projection (88 dimensions)
- Random Projection (119 dimensions)
- Random Projection (176 dimensions)

Random forests trained using these representations were evaluated with LOCO-CV, kernelised LOCO-CV and a traditional 80%/20% train/test split. By comparing the standard deviations of measurements across different repeats of a task, it is possible to compare the repeatability of LOCO-CV and kernelised LOCO-CV to that of an 80/20 80%/20% train/test split. Clustering for LOCO-CV and kernelised LOCO-CV in these experiments was done using *magpie* representation (as in section 3.1).

In both regression and classification results radial basis function application improved the repeatability of LOCO-CV (fig. S2, tables S1-S6). While LOCO-CV and kernelised LOCO-CV are both less repeatable than a 80%/20% train/test split, the decrease in reliability is small enough to not substantially impact the interpretation of results.

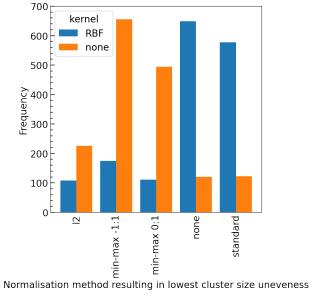


Figure S1: The frequency for which different normalisation methods resulted in the lowest cluster size uneveness (standard deviation in cluster size), grouped by kernel usage.

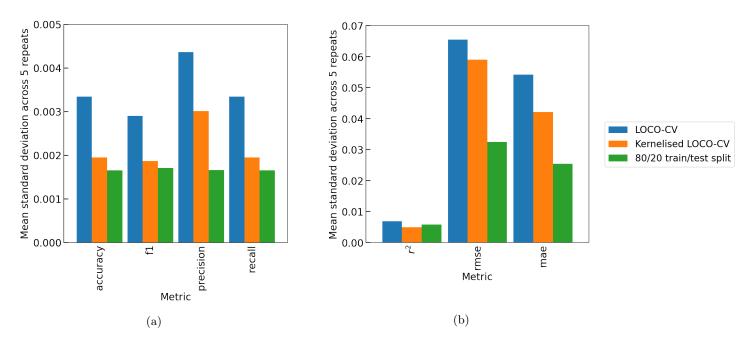


Figure S2: The standard deviation of LOCO-CV, kernelised LOCO-CV, and 80/20 train test split scores for 5 repeats of a task. The mean of these standard deviations is taken across all tasks and all representations. Tasks tested here are all those explored in section 3.1, and representations are those explored in section 3.1 which are less than 500 dimensions. (a) Standard deviation of performance in classification tasks across 5 repeats. Further breakdowns of these data can be seen in tables S1-S3. (b) Standard deviation of performance in regression tasks across 5 repeats. Further breakdowns of these data can be seen in tables S4-S6. As r^2 is unbounded below 0, results shown here is calculated by excluding and r^2 measurement less than 0.

task	CBFV	dimensions	ac	curacy		f1	pr	ecision	r	ecall
	021 (annonstons	\bar{x}	σ	\bar{x}	σ	\bar{x}	σ	\bar{x}	σ
	magpie	88	0.92	0.0013	0.92	0.0013	0.92	0.0012	0.92	0.0013
	CompVec	119	0.92	0.0019	0.92	0.0019	0.92	0.0019	0.92	0.0019
$T_{\rm c} > 10 {\rm K}$	Oliynyk	176	0.92	0.0011	0.92	0.0011	0.92	0.0011	0.92	0.0011
$1_{\rm C}$ > 1011	Random	88	0.91	0.0016	0.91	0.0016	0.91	0.0016	0.91	0.0016
		119	0.91	0.00067	0.91	0.00068	0.91	0.0007	0.91	0.00067
	Projection	176	0.91	0.0012	0.91	0.0012	0.91	0.0012	0.91	0.0012
	magpie	88	0.88	0.0028	0.88	0.0029	0.88	0.0027	0.88	0.0028
	CompVec	119	0.88	0.0049	0.88	0.005	0.88	0.0049	0.88	0.0049
GFA	Oliynyk	176	0.88	0.003	0.88	0.003	0.88	0.003	0.88	0.003
GIII	Dandom	88	0.87	0.0033	0.87	0.0034	0.87	0.0033	0.87	0.0033
	Random Busisstiss	119	0.87	0.004	0.87	0.0042	0.87	0.0039	0.87	0.004
	Projection	176	0.87	0.0017	0.87	0.0017	0.87	0.0018	0.87	0.0017
	magpie	88	1.0	0.0	0.99	0.0	1.0	0.0	1.0	0.0
	CompVec	119	0.99	0.00024	0.99	0.00041	0.99	0.00024	0.99	0.00024
HH stability	Oliynyk	176	0.99	0.00045	0.99	0.00058	0.99	0.00044	0.99	0.00045
iiii Stabiiity	Random	88	0.99	0.0	0.99	0.0	0.99	0.0	0.99	0.0
		119	0.99	0.0	0.98	0.0	0.99	0.0	0.99	0.0
	Projection	176	0.99	0.00024	0.99	0.000 49	0.99	0.00024	0.99	0.00024

Table S1: The mean and standard deviation of various metrics of classification tasks across 5 repeats measured using an 80/20 train/test fit. Note that for the HH stability task, the highly unbalanced nature of the dataset results in unusually repeatable and high performing results.

task	CBFV	dimensions	ac	curacy		f1	pr	ecision	r	ecall
- Cabii	0211	dimensions	\bar{x}	σ	\bar{x}	σ	\bar{x}	σ	\bar{x}	σ
	magpie	88	0.82	0.00092	0.81	0.0016	0.82	0.0015	0.82	0.00092
	CompVec	119	0.84	0.00045	0.83	0.00024	0.83	0.00019	0.84	0.00045
$T_c > 10 \mathrm{K}$	Oliynyk	176	0.82	0.0016	0.80	0.0020	0.82	0.0024	0.82	0.0016
10 / 1011	Duralaria	88	0.64	0.0014	0.53	0.0022	0.64	0.012	0.64	0.0014
	Random	119	0.64	0.0012	0.53	0.0014	0.65	0.012	0.64	0.0012
	Projection	176	0.64	0.0012	0.53	0.0015	0.65	0.014	0.64	0.0012
	magpie	88	0.64	0.011	0.64	0.0081	0.70	0.0046	0.64	0.011
	CompVec	119	0.72	0.0017	0.72	0.0018	0.75	0.0033	0.72	0.0017
GFA	Oliynyk	176	0.65	0.0069	0.66	0.0046	0.71	0.0032	0.65	0.0069
GIM	Duradaura	88	0.53	0.0083	0.50	0.0064	0.61	0.0027	0.53	0.0083
	Random Busisstiss	119	0.53	0.011	0.49	0.0091	0.62	0.010	0.53	0.011
	Projection	176	0.52	0.012	0.49	0.010	0.61	0.0057	0.52	0.012
	magpie	88	0.98	0.00041	0.98	0.000 36	0.97	0.00037	0.98	0.00041
	CompVec	119	0.97	0.00045	0.97	0.00038	0.97	0.00078	0.97	0.00045
HH stability	Oliynyk	176	0.98	0.00039	0.97	0.00034	0.97	0.00050	0.98	0.00039
iiii stabiiity	Dava dava	88	0.97	0.00055	0.96	0.00070	0.95	0.0019	0.97	0.00055
	Random Busisstiss	119	0.97	0.00048	0.96	0.00067	0.95	0.0015	0.97	0.00048
	Projection	176	0.97	0.00042	0.96	0.00057	0.96	0.0017	0.97	0.00042

Table S2: The mean and standard deviation of various metrics of classification tasks across 5 repeats measured using LOCO-CV without any kernels

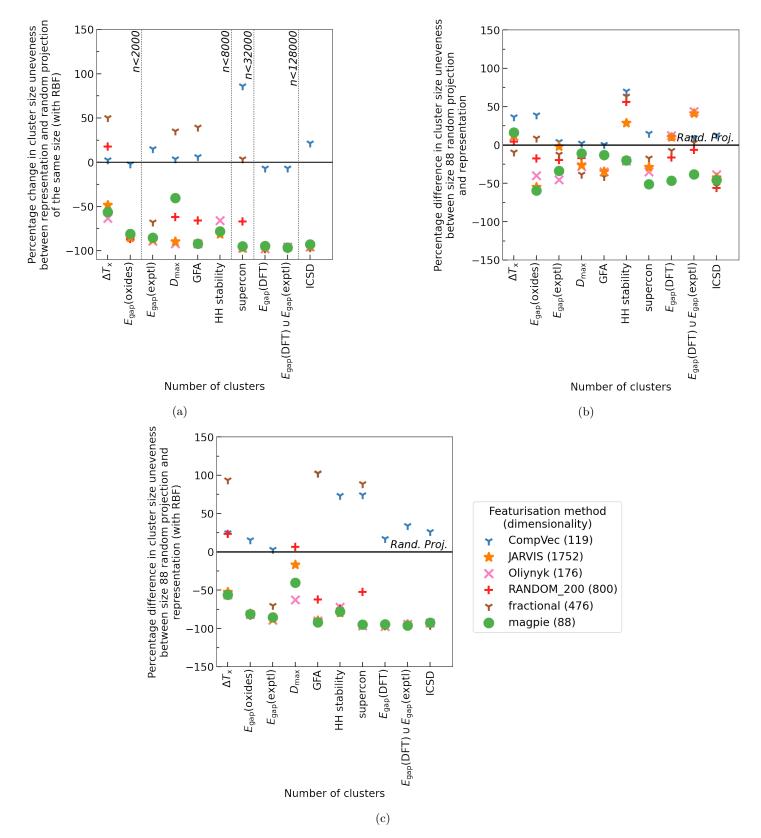


Figure S3: Performance advantage of different CBFVs against *Random Projections* of composition vectors across different datasets as measured by cluster size unevenness (standard deviation in cluster size) (a) CBFVs are compared with *Random Projections* of equal size and a RBF kernel is applied. (b) CBFVs are compared to *Random Projection* of size 88 with no kernel applied (c) CBFVs are compared to *Random Projection* of size 88 with a RBF kernel applied

task	CBFV	dimensions	ac	curacy		f1	pr	ecision	re	ecall
			\bar{x}	σ	\bar{x}	σ	\bar{x}	σ	\bar{x}	σ
	magpie	88	0.91	0.00043	0.91	0.00043	0.91	0.00043	0.91	0.00043
	CompVec	119	0.91	0.00047	0.91	0.00047	0.91	0.00048	0.91	0.00047
$T_{\rm c} > 10 {\rm K}$	Oliynyk	176	0.91	0.00059	0.91	0.00060	0.91	0.00061	0.91	0.00059
$T_{\rm C} > 10 {\rm K}$		88	0.68	0.0019	0.58	0.0028	0.74	0.0097	0.68	0.0019
	Random	119	0.68	0.0017	0.58	0.0027	0.74	0.0087	0.68	0.0017
	Projection	176	0.68	0.0017	0.58	0.0027	0.74	0.0066	0.68	0.0017
	magpie	88	0.88	0.00058	0.87	0.00060	0.88	0.00057	0.88	0.00058
	CompVec	119	0.88	0.0011	0.88	0.0011	0.88	0.0011	0.88	0.0011
GFA	Oliynyk	176	0.88	0.00072	0.88	0.00072	0.88	0.00066	0.88	0.00072
om	Davidaria	88	0.55	0.0054	0.51	0.0039	0.61	0.0056	0.55	0.0054
	Random	119	0.54	0.010	0.51	0.0080	0.61	0.0056	0.54	0.010
	Projection	176	0.53	0.0065	0.51	0.0050	0.61	0.0049	0.53	0.0065
	magpie	88	0.98	0.00029	0.98	0.00034	0.98	0.00030	0.98	0.00029
	CompVec	119	0.97	0.00032	0.97	0.00034	0.97	0.00049	0.97	0.00032
HH stability	Oliynyk	176	0.98	0.00043	0.98	0.00037	0.98	0.00046	0.98	0.00043
iiii Stabiiity	Dam dama	88	0.97	0.00088	0.96	0.0012	0.96	0.0027	0.97	0.00088
	Random Busissetisse	119	0.97	0.00074	0.95	0.0011	0.95	0.0022	0.97	0.00074
	Projection	176	0.97	0.00080	0.96	0.0012	0.95	0.0029	0.97	0.00080

Table S3: The mean and standard deviation of various metrics of classification tasks across 5 repeats measured using kernelised LOCO-CV (using radial basis function kernel)

S3 Further observations on case studies

For each machine learning task investigated we attempted to recreate the representation used in that study, and train a random forest on this representation to compare to representations investigated in Section 3.1. When recreation proved infeasible, alternatives have been noted. Full tables of results for each case study are provided, including leave one cluster out cross validation (LOCO-CV) and kernelised LOCO-CV measurements (tables S7-S17). The featurisation used in K-means clustering for LOCO-CV and kernelised LOCO-CV measurements was done using *magpie* representation, as it generally demonstrated balanced clustering across the datasets and tasks investigated here (fig. 6a), and resulted in more models learning trends more consistently (fig. 8b).

As noted in the main text, these papers were selected for interesting use of machine learning (ML), not for the choice of representation which was used in each paper. Several of these case studies mention that representation could be improved through further feature selection and none make any claims that their representation is advantageous over existing other representations (such as those discussed examined in section 3.1).

S3.1 Machine learning modelling of superconducting critical temperature (2018)

This study uses data from the Japanese National Institute of Materials Science superconductivity dataset (total training set size 13077) [7]. They use random forests to predict superconducting critical temperature (T_c) in three contexts:

- T_c : Using a regressor to predict the superconducting critical temperature (T_c) of a material.
- $T_{\rm c} > 10$ K: Classifying if the $T_{\rm c}$ of a material is greater than 10 K.
- $T_{\rm c}|(T_{\rm c} > 10 {\rm K}: {\rm Regressing to find } T_{\rm c} {\rm given } T_{\rm c} > 10 {\rm K}.$

The authors of this study derive a custom CBFV from the magpie package. In recreating all three of the above tasks, their custom CBFV performs similar to the CBFVs investigated in section 3.1 (tables S7 to S9). This is in line with the suggestion that a dataset of this size will see little benefit from domain knowledge. Due to limited reproducibility our results are compared to their results as published, rather than as recreated.

task	CBFV	dimensions		r^{2}		rmse		mae
			\bar{x}	σ	\bar{x}	σ	$ar{x}$	σ
	magpie	88	0.68	0.020	0.97	0.031	0.27	0.0057
	CompVec	119	0.65	0.014	1.0	0.020	0.27	0.0032
D_{\max}	Oliynyk	176	0.61	0.018	1.1	0.025	0.29	0.0039
max	Dan dama	88	0.56	0.029	1.1	0.037	0.40	0.0069
	Random	119	0.63	0.012	1.0	0.017	0.38	0.0057
	Projection	176	0.61	0.019	1.1	0.027	0.39	0.0060
	magpie	88	0.77	0.00093	0.77	0.0016	0.52	0.00096
	CompVec	119	0.63	0.0011	0.98	0.0015	0.68	0.0015
$E_{\mathrm{gap}}(\mathrm{DFT}) \cup$	Oliynyk	176	0.78	0.0012	0.76	0.0021	0.51	0.0007
$E_{\rm gap}({\rm exptl})$	D 1	88	0.54	0.0012	1.1	0.0014	0.83	0.0010
	Random Busicesticus	119	0.54	0.0012	1.1	0.0014	0.83	0.0012
	Projection	176	0.56	0.0023	1.1	0.0027	0.81	0.0021
	magpie	88	0.77	0.0012	0.79	0.0021	0.52	0.00076
	CompVec	119	0.66	0.0018	0.96	0.0025	0.66	0.0016
$E_{\rm gap}({\rm DFT})$	Oliynyk	176	0.78	0.0013	0.78	0.0022	0.51	0.00058
	Dax 1	88	0.54	0.00093	1.1	0.0011	0.84	0.0010
	Random Braciastian	119	0.54	0.0015	1.1	0.0018	0.84	0.0019
	Projection	176	0.56	0.0027	1.1	0.0034	0.82	0.0016
	magpie	88	0.84	0.0032	0.63	0.0065	0.43	0.0023
	CompVec	119	0.68	0.0052	0.91	0.0074	0.56	0.0044
$E_{\rm gap}({\rm exptl})$	Oliynyk	176	0.84	0.0035	0.64	0.0069	0.43	0.0021
$D_{\rm gap}(expt)$		88	0.51	0.0060	1.1	0.0068	0.68	0.0045
	Random	119	0.58	0.0069	1.0	0.0085	0.64	0.0075
	Projection	176	0.61	0.0059	1.0	0.0076	0.65	0.0036
	magpie	88	0.71	0.0054	1.3	0.012	0.94	0.0081
	CompVec	119	0.36	0.019	1.9	0.027	1.4	0.022
$E_{\rm gap}({\rm oxides})$	Oliynyk	176	0.76	0.0051	1.1	0.012	0.86	0.012
	Random	88	0.35	0.015	1.9	0.021	1.5	0.012
		119	0.27	0.011	2.0	0.014	1.6	0.016
	Projection	176	0.35	0.0099	1.9	0.014	1.5	0.019
	magpie	88	0.87	0.00084	10	0.034	6.3	0.039
	CompVec	119	0.86	0.0016	11	0.061	6.4	0.045
$T_{\rm c} (T_{\rm c}>10{\rm K})$	Oliynyk	176	0.88	0.00034	10	0.014	6.2	0.028
	Random	88	0.84	0.0018	12	0.064	7.0	0.050
	Ranaom Projection	119	0.86	0.0010	11	0.040	6.8	0.012
	1 10 jection	176	0.85	0.0016	11	0.061	6.8	0.041
	magpie	88	0.83	0.0013	11	0.041	5.4	0.018
	CompVec	119	0.82	0.00079	11	0.025	5.2	0.015
$T_{\rm c}$	Oliynyk	176	0.83	0.00047	11	0.015	5.3	0.021
- 0	Pan dama	88	0.81	0.00097	12	0.030	5.9	0.024
	Random Braciastian	119	0.81	0.0013	12	0.040	5.9	0.019
	Projection	176	0.80	0.0018	12	0.055	5.9	0.018
	magpie	88	0.60	0.0049	14	0.086	11	0.040
	CompVec	119	0.65	0.011	13	0.20	10	0.19
$\Delta T_{\rm x}$	Oliynyk	176	0.60	0.0058	14	0.10	11	0.044
۲ ^۲ X		88	0.67	0.0060	13	0.12	9.9	0.14
	Random	119	0.67	0.0069	13	0.12	10	0.18
	Projection	176	0.65	0.0063	13	0.12	10	0.12

Table S4: The mean (\bar{x}) and standard deviation (σ) of r^2 , mean squared error (mse), root mean squared error (rmse) and mean absolute error (mae) of regression tasks across 5 repeats measured using an 80/20 train/test split. Unlike tables S5 and S6, none of the r^2 values found using this method were less than 0.

. 1	CDEV	1	<i>r</i>	.2	1	rmse		mae
task	CBFV	dimensions	\bar{x}	σ	\bar{x}	σ	\bar{x}	σ
	magpie	88	-15		2.1	0.018	1.2	0.015
	CompVec	119	-7.4		2.0	0.027	0.78	0.013
D_{\max}	Oliynyk	176	-21		2.6	0.039	1.6	0.021
- max	Random	88	-510		4.6	0.13	3.7	0.12
	Projection	119	-210		4.2	0.21	3.4	0.2
	110jecii01	176	-240		4.2	0.18	3.4	0.18
	magpie	88	0.53	0.00036	1.1	0.00048	0.84	0.000 48
	CompVec	119	0.38	0.00046	1.3	0.00046	0.93	0.0007
$E_{\rm gap}(\rm DFT) \cup$	Oliynyk	176	0.56	0.00065	1.1	0.00086	0.8	0.00035
$E_{\rm gap}({\rm exptl})$	Random	88	-0.12		1.5	0.0032	1.2	0.0023
	Projection	119	-0.026		1.5	0.0039	1.2	0.0031
	r rojecuon	176	-0.05		1.5	0.0024	1.2	0.0013
	magpie	88	0.54	0.00061	1.1	0.00084	0.83	0.00087
	CompVec	119	0.38	0.00036	1.3	0.00033	0.93	0.00057
$E_{\rm gap}({ m DFT})$	Oliynyk	176	0.57	0.00065	1.1	0.00092	0.8	0.001
-gap(PII)	Pandom	88	-0.13		1.5	0.004	1.2	0.0027
	Random Projection	119	-0.022		1.5	0.0059	1.2	0.0044
	Projection	176	-0.061		1.5	0.0054	1.2	0.0037
	magpie	88	0.52	0.0045	0.98	0.0034	0.72	0.0027
	CompVec	119	0.28	0.0033	1.2	0.00064	0.79	0.0014
$E_{\rm gap}({\rm exptl})$	Oliynyk	176	0.6	0.0032	0.89	0.0024	0.67	0.0016
Dgap(CAP01)		88	-0.6		1.4	0.008	1.1	0.0057
	Random Busisstiss	119	-0.54		1.5	0.0076	1.2	0.0055
	Projection	176	-1.2		1.6	0.034	1.2	0.034
	magpie	88	0.49	0.007	1.5	0.0058	1.2	0.0052
	CompVec	119	0.3	0.0056	1.8	0.0057	1.4	0.0054
$E_{\rm gap}({\rm oxides})$	Oliynyk	176	0.53	0.0046	1.4	0.004	1.1	0.0027
Egap (onices)	Random	88	0.22	0.018	2.0	0.021	1.6	0.019
	Projection	119	0.19	0.011	2.1	0.011	1.7	0.01
	110jecii01	176	0.26	0.0041	2.0	0.0051	1.6	0.0064
	magpie	88	0.45	0.026	14	0.048	9.3	0.053
	CompVec	119	0.45	0.025	13	0.087	8.3	0.07
$T_{\rm c} (T_{\rm c} > 10{\rm K}) $	Oliynyk	176	0.48	0.014	13	0.043	8.8	0.03
	Random	88	-16		21	0.29	17	0.28
	Ranaom Projection	119	-21		23	0.24	19	0.15
	1 rojection	176	-32		22	0.29	19	0.3
	magpie	88	0.39	0.0059	13	0.089	7.9	0.054
	CompVec	119	0.48	0.0033	12	0.046	6.9	0.039
$T_{\rm c}$	Oliynyk	176	0.23	0.0096	13	0.07	8.2	0.038
C C	Random	88	-1.3		17	0.18	13	0.12
	Ranaom Projection	119	-0.97		16	0.14	13	0.12
	1 rojection	176	-0.99		17	0.11	13	0.07
	magpie	88	-0.31		22	0.12	18	0.1
	CompVec	119	-0.092		21	0.15	17	0.12
$\Delta T_{\rm x}$	Oliynyk	176	-0.19		21	0.13	17	0.098
→ + x		88	-1.7		27	0.21	22	0.16
	Random Braciastian	119	-0.52		23	0.12	18	0.063
	Projection	176	-0.66		23	0.17	19	0.14

Table S5: The mean (\bar{x}) and standard deviation (σ) of r^2 , mean squared error (mse), root mean squared error (rmse) and mean absolute error (mae) of regression tasks across 5 repeats measured using LOCO-CV. As r^2 has no lower bound, standard deviations of r^2 were not included when calculating the standard deviation, where none of the repeats found an $r^2 > 0$, no standard deviation has been reported. 7

task	CBFV	dimensions	<i>r</i>	.2	1	rmse		mae
			\bar{x}	σ	\bar{x}	σ	\bar{x}	σ
	magpie	88	0.63	0.012	1.4	0.021	0.29	0.000 81
	CompVec	119	0.6	0.0075	1.4	0.0078	0.27	0.0021
D_{\max}	Oliynyk	176	0.58	0.01	1.4	0.015	0.29	0.00075
$D_{\rm max}$		88	-120		4.6	0.17	3.5	0.1
	Random	119	-61		4.1	0.18	3.1	0.099
	Projection	176	-57		4.0	0.066	3.1	0.03
	magpie	88	0.77	0.00075	0.78	0.0012	0.54	0.000 41
	CompVec	119	0.71	0.001	0.87	0.0014	0.58	0.00049
$E_{\mathrm{gap}}(\mathrm{DFT}) \cup$	Oliynyk	176	0.77	0.00044	0.77	0.00069	0.52	0.00039
$E_{\rm gap}({\rm exptl})$	Random	88	0.045	0.013	1.4	0.0084	1.1	0.0075
	Projection	119	0.1	0.0083	1.4	0.0085	1.1	0.0069
	Frojection	176	0.083	0.0081	1.4	0.0056	1.1	0.0059
	magpie	88	0.77	0.00013	0.78	0.0002	0.53	0.000 22
	CompVec	119	0.72	0.00034	0.87	0.00049	0.57	0.00021
$E_{\rm gap}({ m DFT})$	Oliynyk	176	0.78	0.00025	0.76	0.00042	0.52	0.00034
gap ()	Random	88	0.04	0.0032	1.4	0.0074	1.1	0.0071
	Ranaom Projection	119	0.11	0.01	1.4	0.0084	1.1	0.0082
		176	0.083	0.0087	1.4	0.0069	1.1	0.0069
	magpie	88	0.81	0.0014	0.65	0.0025	0.43	0.00097
	CompVec	119	0.69	0.0022	0.83	0.0022	0.51	0.00069
$E_{\rm gap}({\rm exptl})$	Oliynyk	176	0.81	0.00078	0.64	0.0019	0.42	0.00094
gap (* 1*)	Random	88	-0.38		1.4	0.0054	1.1	0.0062
	Projection	119	-0.43		1.5	0.01	1.1	0.01
	110jection	176	-0.6		1.5	0.013	1.1	0.014
	magpie	88	0.72	0.004	1.2	0.0067	0.91	0.0054
	CompVec	119	0.51	0.0032	1.6	0.0049	1.2	0.0038
$E_{\rm gap}({\rm oxides})$	Oliynyk	176	0.75	0.0024	1.2	0.0046	0.87	0.0039
	Random	88	0.24	0.011	2.0	0.021	1.6	0.022
	Projection	119	0.21	0.012	2.0	0.022	1.6	0.018
	1 10 jection	176	0.26	0.015	2.0	0.024	1.6	0.02
	magpie	88	0.88	0.0003	10	0.012	6.4	0.0091
	CompVec	119	0.87	0.0009	10	0.034	6.4	0.021
$T_{\rm c} (T_{\rm c} > 10{\rm K}) $	Oliynyk	176	0.88	0.00076	10	0.03	6.3	0.013
,	Random	88	-16		21	0.12	17	0.074
	Projection	119	-22		24	0.41	20	0.37
		176	-39		23	0.35	19	0.26
	magpie	88	0.83	0.000 83	11	0.028	5.6	0.013
	CompVec	119	0.83	0.00062	11	0.021	5.3	0.011
$T_{\rm c}$	Oliynyk	176	0.84	0.00077	11	0.026	5.5	0.0092
	Random	88	-1.4		17	0.11	13	0.08
	Projection	119	-0.56		15	0.07	12	0.054
	1.5,000000	176	-0.92		18	0.14	13	0.077
	magpie	88	0.6	0.009	14	0.11	9.9	0.057
	CompVec	119	0.64	0.011	14	0.11	9.3	0.057
$\Delta T_{\rm x}$	Oliynyk	176	0.62	0.011	14	0.14	9.9	0.057
	Random	88	-1.5		27	0.18	22	0.18
	Projection	119	-0.5		23	0.22	18	0.21
	1 10/0000	176	-0.68		23	0.11	19	0.13

Table S6: The mean (\bar{x}) and standard deviation (σ) of r^2 , mean squared error (mse), root mean squared error (rmse) and mean absolute error (mae) of regression tasks across 5 repeats measured using LOCO-CV with radial basis function kernel. As r^2 has no lower bound, values of r^2 lower than 0 were excluded when calculating σ . Where none of the repeats found an $r^2 > 0$, no σ has been reported.

80%	%/20% train/t	est spli	it		
CBFV	dimensions	r^2	mse	\mathbf{rmse}	mae
magpie	88	0.83	120	11.0	5.37
CompVec	119	0.82	125	11.2	5.1'
Stanev	145	0.88			
Oliynyk	176	0.83	122	11.1	5.3
fractional	476	0.82	130	11.4	5.2
$RANDOM_{200}$	800	0.83	121	11.0	5.4
JARVIS	1752	0.83	117	10.8	5.2
	88	0.81	134	11.6	5.8
	119	0.81	132	11.5	5.8
Random Projection	176	0.80	140	11.8	5.9
папаот в тојесноп	476	0.81	132	11.5	5.7
	800	0.82	129	11.4	5.7
	1752	0.82	128	11.3	5.7
	LOCO-CV sc	cores			
CBFV	dimensions	r^2	mse	rmse	ma
magpie	88	0.39	199	12.7	7.8
CompVec	119	0.48	192	12.1	6.9
Oliynyk	176	0.25	204	13.0	8.1
fractional	476	0.49	180	11.9	6.8
$RANDOM_{200}$	800	0.49	177	11.9	7.23
JARVIS	1752	0.44	197	12.4	7.7'
Kern	elised LOCO-	CV sco	res		
CBFV	dimensions	r^2	mse	rmse	ma
magpie	88	0.83	127	11.2	5.5
CompVec	119	0.83	123	11.1	5.32
Oliynyk	176	0.84	120	10.9	5.5
fractional	476	0.84	119	10.9	5.2
RANDOM_200	800	0.84	119	10.9	5.6
JARVIS	1752	0.85	114	10.7	5.3

Table S7: Full table of results for the task of predicting T_c . Clusterings for LOCO-CV were done with magpie featurisation, and kernelised LOCO-CV was magpie featurisation with RBF kernel.

800	%/20% train/t	est spl	it		
CBFV	dimensions	r^2	mse	rmse	mae
magpie	88	0.87	109	10.4	6.36
CompVec	119	0.86	118	10.9	6.44
Stanev	145	0.88			
Oliynyk	176	0.88	99.3	9.96	6.24
fractional	476	0.87	108	10.4	6.26
$RANDOM_200$	800	0.87	109	10.4	6.47
JARVIS	1752	0.88	103	10.1	6.25
	88	0.84	134	11.6	7.05
	119	0.86	116	10.8	6.76
Pandom Projection	176	0.85	124	11.1	6.82
Random Projection	476	0.87	109	10.5	6.49
	800	0.86	113	10.6	6.66
	1752	0.86	119	10.9	6.70
	LOCO-CV so	cores			
CBFV	dimensions	r^2	mse	rmse	mae
magpie	88	0.45	222	13.8	9.29
CompVec	119	0.47	198	12.9	8.27
Oliynyk	176	0.47	195	13.0	8.84
fractional	476	0.50	183	12.3	8.01
$RANDOM_200$	800	0.27	214	13.8	9.33
JARVIS	1752	0.44	197	13.1	8.87
Kerr	nelised LOCO-	CV sco	ores		
CBFV	dimensions	r^2	mse	rmse	mae
magpie	88	0.88	105	10.2	6.42
CompVec	119	0.88	108	10.4	6.36
Oliynyk	176	0.88	103	10.1	6.35
fractional	476	0.88	103	10.1	6.22
$RANDOM_200$	800	0.87	109	10.4	6.57
JARVIS	1752	0.89	98.7	9.92	6.24

Table S8: Full table of results for the task of predicting $T_c|(T_c > 10 \text{ K})$. Clusterings for LOCO-CV were done with magpie featurisation, and kernelised LOCO-CV was magpie featurisation with RBF kernel.

	$80\%/20\%~{ m tr}$	ain/test spl	it		
CBFV	dimensions	accuracy	f1	precision	recall
magpie	88	0.92	0.92	0.92	0.92
CompVec	119	0.92	0.92	0.92	0.92
Stanev	145	0.91	0.89	0.87	0.92
Oliynyk	176	0.92	0.92	0.92	0.92
fractional	476	0.92	0.92	0.92	0.92
$RANDOM_200$	800	0.92	0.92	0.92	0.92
JARVIS	1752	0.92	0.92	0.92	0.92
	88	0.91	0.91	0.91	0.91
	119	0.91	0.91	0.91	0.91
Random Projection	176	0.91	0.91	0.91	0.91
капаот Ргојесион	476	0.91	0.91	0.91	0.91
	800	0.91	0.91	0.91	0.91
	1752	0.91	0.91	0.91	0.91
	LOCO-0	CV scores			
CBFV	dimensions	accuracy	f1	precision	recall
magpie	88	0.82	0.81	0.82	0.82
CompVec	119	0.84	0.83	0.84	0.84
Oliynyk	176	0.82	0.80	0.81	0.82
fractional	476	0.83	0.82	0.83	0.83
$RANDOM_200$	800	0.82	0.80	0.81	0.82
JARVIS	1752	1.0	1.0	1.0	1.0
	Kernelised LC	OCO-CV sco	ores		
CBFV	dimensions	accuracy	f1	precision	recall
magpie	88	0.91	0.91	0.91	0.91
CompVec	119	0.91	0.91	0.91	0.91
Oliynyk	176	0.91	0.91	0.91	0.91
fractional	476	0.91	0.91	0.91	0.91
RANDOM 200	800	0.91	0.91	0.91	0.91
JARVIS	1752	1.0	1.0	1.0	1.0

Table S9: Full table of results for the task of predicting $T_c > 10$ K. Clusterings for LOCO-CV were done with magpie featurisation, and kernelised LOCO-CV was magpie featurisation with RBF kernel.

Table S10: Full table of results for the task of predicting HH stability. Clusterings for LOCO-CV were done with *magpie* featurisation, and kernelised LOCO-CV was *magpie* featurisation with RBF kernel.

	80%/20% tr	ain/test spl	it		
CBFV	dimensions	accuracy	f1	precision	recall
LeGrain	51	0.99	0.99	0.99	0.99
magpie	88	1.0	0.99	1.0	1.0
CompVec	119	0.99	0.99	0.99	0.99
Oliynyk	176	0.99	0.99	0.99	0.99
fractional	476	0.99	0.99	0.99	0.99
RANDOM 200	800	0.99	0.99	0.99	0.99
JARVIS	1752	1.0	1.0	1.0	1.0
	88	0.99	0.99	0.99	0.99
	119	0.99	0.98	0.99	0.99
Dandana Duaiastian	176	0.99	0.99	0.99	0.99
Random Projection	476	0.99	0.98	0.99	0.99
	800	0.99	0.99	0.99	0.99
	1752	0.99	0.98	0.99	0.99

S3.2 Materials screening for the discovery of new half-Heuslers: Machine learning versus ab initio Methods

This paper uses random forests to predict whether a half-heusler is stable or unstable using a custom made descriptor containing structural information of a compound [5]. The dataset they use contains 164 stable vs 11022 unstable half-heuslers which introduces some difficulties when applying LOCO-CV.

A dataset which is overwhelmingly one class is no longer suitable for LOCO-CV measurements as it is possible for all of the outlier class will lie in one cluster, which breaks many metric formulae which require all classes to have at least one example to avoid division by zero. For example in binary classification the specificity can be measured by

Specificity
$$=\frac{tn}{N}$$

where tn is the number of true negative predictions and N is the total number of negative observations in the dataset. Where N = 0, even if you were to tweak the formula to stop division by zero (such as by adding a small number to the denominator), such a metric would be meaningless. We found that LOCO-CV failed to run due to all of the classes ending up in one cluster for all featurisation methods.

While LOCO-CV will not allow for exptrapolatory measures of algorithms trained on these data, given a random split it is highly unlikely that all stable heuslers end up in test dataset. As such, we measured performance of our chosen CBFVs for comparison to the featurisation used in this case study. F1 score and precision were considered the most important metrics for success, as the unbalanced nature of the dataset makes accuracy and recall are approximately 1 for all models measured. CBFVs with domain knowledge resulted in more precise predictions than both the structural representation used by in this paper and representations without domain knowledge (table S10).

This is in contrast to previous suggestions that there would be little benefit for domain knowledge in CBFVs for a dataset of this size [6], however, those findings had no stipulations on dataset balance, which likely affected results. CBFVs with domain knowledge outperforming the representation used in this case study is surprising given that CBFVs are made using no structural information, suggesting that just because a representation *should* contain more knowledge does not mean such a representation will outperform others without such information.

S3.3 Data-driven discovery of photoactive quaternary oxides using first-principles machine learning

This case study predicts band gaps found in the Computational Materials Repository database, using the 799 oxides as training/test data [2]. The representation used in the paper is a CBFV of 148 features generated with matminer, most (132) of which are derived from the magpie descriptors, with the rest constituting information on the highest occupied molecular orbital and lowest unoccupied molecular orbital, norms of stoichiometric attributes, ionic properties (including maximum and average ionic character between two atoms), and an estimation of absolute position of band centre. Some of these features are repetitions of those in the magpie feature set for example the average number of s, p, d, and f valence electrons. The aggregation functions implemented included the mean mean absolute deviation and modal value for magpie descriptors as well as the mean, sum, range, and variance of magpie descriptors which are used in previous work (and the main text of this work).

The representation used in this study resulted in better predictions than those found using no domain knowledge, performing equivalently to other CBFVs with domain knowledge, and performing significantly better in LOCO-CV measurements (table S11). This would fit the suggestion that inclusion of domain knowledge improves performance for ML methods when dataset size is smaller than 1000. It is notable that the representation used in this study did not outperform *magpie* as implemented for this and previous work[6]. This suggests that including the aggregation functions mode and mean absolute deviation of a feature does not meaningfully impact performance.

S3.4 A machine learning approach for engineering bulk metallic glass alloys

This study uses ensemble learning methods for three separate prediction tasks related to the engineering of bulk metallic glass alloys (BMG) [9]. The following are predicted:

- Glass Forming Ability (GFA): predicting BMG's ability to exist in an amorphous state.
- D_{max} : Predicting the critical casting diameter of a BMG.
- $\Delta T_{\rm x}$: The supercoooled liquid range of a BMG.

The work uses a CBFV derived from the magpie descriptors with a total of more than 200 features, the exact number varying depending on prediction task. This is compared to the originally proposed 145 features [8] and the variant we use with 88 features [6]. This is applied to custom datasets collected from 41 different papers and one handbook, they used subsets of these for each task as GFA, D_{max} , and ΔT_x were not available for all compounds.

	0%/20% train/	/test_sr	olit		
CBFV	dimensions	r^2	mse	rmse	mae
magpie	88	0.71	1.57	1.25	0.934
CompVec	119	0.37	3.49	1.87	1.38
Davies	148	0.82	0.990	0.995	0.776
Oliynyk	176	0.77	1.26	1.12	0.854
fractional	476	0.45	3.05	1.75	1.32
$RANDOM_{200}$	800	0.42	3.22	1.79	1.41
JARVIS	1752	0.70	1.68	1.30	0.945
	88	0.34	3.65	1.91	1.48
	119	0.27	4.01	2.00	1.58
Dandom Draigation	176	0.36	3.54	1.88	1.46
Random Projection	476	0.37	3.46	1.86	1.42
	800	0.35	3.57	1.89	1.44
	1752	0.31	3.80	1.95	1.47
	LOCO-CV s	scores			
CBFV	dimensions	r^2	mse	rmse	mae
magpie	88	0.49	2.29	1.47	1.16
CompVec	119	0.31	3.30	1.78	1.39
Oliynyk	176	0.53	2.05	1.40	1.10
fractional	476	0.27	3.45	1.83	1.43
RANDOM 200	800	0.23	3.51	1.85	1.47
JARVIS	1752	0.50	2.19	1.47	1.16
Davies	148	0.58	1.79	1.32	1.01
Ker	nelised LOCC	O-CV so	cores		
CBFV	dimensions	r^2	mse	rmse	mae
magpie	88	0.73	1.44	1.20	0.908
CompVec	119	0.52	2.56	1.59	1.17
Oliynyk	176	0.75	1.34	1.15	0.868
fractional	476	0.52	2.55	1.59	1.18
RANDOM_200	800	0.52	2.57	1.60	1.25
JARVIS	1752	0.72	1.47	1.21	0.912
011107 1.0					

Table S11: Full table of results for the task of predicting E_{gap} (oxides). Clusterings for LOCO-CV were done with magpie featurisation, and kernelised LOCO-CV was magpie featurisation with RBF kernel.

80	%/20% train/	test split			
CBFV	dimensions	r^2	mse	rmse	mae
magpie	88	0.61	191	13.8	10.8
CompVec	119	0.64	177	13.3	10.2
Oliynyk	176	0.60	196	14.0	10.8
Ward	213	0.68	159	12.6	9.80
fractional	476	0.58	209	14.4	11.1
$RANDOM_200$	800	0.59	202	14.2	11.1
JARVIS	1752	0.61	193	13.9	10.8
	88	0.68	160	12.6	9.93
	119	0.65	172	13.1	10.3
Random Projection	176	0.64	178	13.4	10.5
пипиот в тојесноп	476	0.67	163	12.8	10.1
	800	0.67	164	12.8	9.99
	1752	0.68	158	12.6	9.96
	LOCO-CV s	cores			
CBFV	dimensions	r^2	mse	rmse	mae
magpie	88	-0.29	524	22.2	17.8
CompVec	119	-0.11	450	20.9	16.8
Oliynyk	176	-0.20	478	21.4	17.3
Ward	213	-0.020	418	19.9	16.0
fractional	476	-0.19	471	21.5	16.9
$RANDOM_{200}$	800	-0.14	454	20.8	16.9
JARVIS	1752	-0.17	464	21.1	16.8
Ker	nelised LOCO	-CV scor	es		
CBFV	dimensions	r^2	mse	rmse	mae
magpie	88	0.59	212	14.4	9.99
CompVec	119	0.63	195	13.8	9.45
Oliynyk	176	0.61	202	14.1	9.94
Ward	213	0.65	184	13.4	9.29
fractional	476	0.60	208	14.3	9.92
RANDOM_200	800	0.60	212	14.4	10.2
	1752	0.61	205	14.2	10.0

Table S12: Full table of results for the task of predicting ΔT_x . Clusterings for LOCO-CV were done with *magpie* featurisation, and kernelised LOCO-CV was *magpie* featurisation with RBF kernel.

80%/20% train/test split					
CBFV	dimensions	r^2	mse	rmse	mae
magpie	88	0.69	0.904	0.951	0.271
CompVec	119	0.64	1.06	1.03	0.271
Oliynyk	176	0.60	1.17	1.08	0.289
Ward	213	0.65	1.03	1.02	0.282
fractional	476	0.61	1.12	1.06	0.286
$RANDOM_{200}$	800	0.69	0.908	0.953	0.277
JARVIS	1752	0.55	1.31	1.15	0.308
	88	0.57	1.29	1.14	0.407
	119	0.64	1.09	1.04	0.389
Random Projection	176	0.62	1.13	1.06	0.377
Ranaom Projection	476	0.56	1.31	1.14	0.397
	800	0.59	1.21	1.10	0.399
	1752	0.61	1.16	1.08	0.385
	LOCO-CV	scores			
CBFV	dimensions	r^2	mse	rmse	mae
magpie	88	-15.	6.46	2.14	1.22
CompVec	119	-7.4	5.39	1.94	0.780
Oliynyk	176	-20.	8.49	2.54	1.55
Ward	213	-3.2	3.75	1.73	0.470
fractional	476	-9.1	5.21	1.92	0.758
RANDOM 200	800	-27.	10.9	2.77	1.54
JARVIS –	1752	-50.	15.6	3.27	2.07
Ker	nelised LOCC	-CV so	cores		
CBFV	dimensions	r^2	mse	rmse	mae
magpie	88	0.62	2.11	1.37	0.292
CompVec	119	0.59	2.47	1.44	0.276
Oliynyk	176	0.57	2.45	1.46	0.299
Ward	213	0.64	2.06	1.34	0.273
fractional	476	0.61	2.32	1.40	0.285
RANDOM 200	800	0.57	2.54	1.47	0.308
$IIANDOM _200$					

Table S13: Full table of results for the task of predicting D_{max} . Clusterings for LOCO-CV were done with magpie featurisation, and kernelised LOCO-CV was magpie featurisation with RBF kernel.

CBFV	dimensions	accuracy	it f1	precision	recall		
magpie	88	0.88	0.88	0.88	0.88		
CompVec	119	0.88	0.88	0.88	0.88		
Oliynyk	176	0.88	0.88	0.88	0.88		
Ward	213	0.89	0.89	0.89	0.89		
fractional	476	0.87	0.87	0.87	0.87		
RANDOM 200	800	0.87	0.87	0.87	0.87		
JARVIS –	1752	0.89	0.89	0.89	0.89		
	119	0.87	0.86	0.87	0.87		
	176	0.87	0.87	0.87	0.87		
	476	0.87	0.87	0.87	0.87		
Random Projection	800	0.87	0.87	0.87	0.87		
	1752	0.87	0.87	0.87	0.87		
LOCO-CV scores							
CBFV	dimensions	accuracy	f1	precision	recall		
magpie	88	0.64	0.64	0.70	0.64		
CompVec	119	0.73	0.72	0.74	0.73		
Oliynyk	176	0.65	0.66	0.71	0.65		
Ward	213	0.74	0.74	0.77	0.74		
fractional	476	0.66	0.66	0.72	0.66		
$RANDOM_{200}$	800	0.63	0.61	0.70	0.63		
JARVIS	1752	0.56	0.57	0.71	0.56		
	Kernelised LC	OCO-CV sco	ores				
CBFV	dimensions	accuracy	f1	precision	recall		
magpie	88	0.88	0.88	0.88	0.88		
CompVec	119	0.88	0.88	0.88	0.88		
Oliynyk	176	0.88	0.88	0.88	0.88		
Ward	213	0.88	0.88	0.88	0.88		
fractional	476	0.87	0.87	0.87	0.87		
$RANDOM_{200}$	800	0.87	0.87	0.87	0.87		
JARVIS	1752	0.88	0.88	0.88	0.88		

Table S14: Full table of results for the task of predicting GFA. Clusterings for LOCO-CV were done with *magpie* featurisation, and kernelised LOCO-CV was *magpie* featurisation with RBF kernel.

80%/20% train/test split							
CBFV	dimensions	r^2	mse	rmse	mae		
magpie	88	0.85	0.394	0.628	0.433		
CompVec	119	0.68	0.829	0.910	0.558		
Oliynyk	176	0.85	0.397	0.630	0.422		
fractional	476	0.75	0.633	0.796	0.513		
$RANDOM_{200}$	800	0.63	0.947	0.973	0.575		
JARVIS	1752	0.85	0.394	0.628	0.421		
	88	0.51	1.27	1.13	0.680		
	119	0.57	1.11	1.05	0.647		
Dandom Duciection	176	0.62	0.986	0.993	0.639		
Random Projection	476	0.59	1.06	1.03	0.623		
	800	0.61	1.00	1.00	0.619		
	1752	0.60	1.04	1.02	0.623		
LOCO-CV scores							
CBFV	dimensions	r^2	mse	rmse	mae		
magpie	88	0.52	0.982	0.978	0.721		
CompVec	119	0.32	1.40	1.17	0.814		
Oliynyk	176	0.60	0.810	0.892	0.673		
fractional	476	0.35	1.33	1.14	0.807		
$RANDOM_200$	800	0.38	1.29	1.12	0.828		
JARVIS	1752	0.56	0.899	0.937	0.687		
Kernelised LOCO-CV scores							
CBFV	dimensions	r^2	mse	rmse	mae		
magpie	88	0.81	0.420	0.645	0.434		
CompVec	119	0.66	0.765	0.871	0.535		
Oliynyk	176	0.81	0.416	0.641	0.424		
fractional	476	0.71	0.648	0.802	0.501		
RANDOM 200	800	0.64	0.825	0.904	0.566		
JARVIS	1752	0.82	0.395	0.626	0.418		

Table S15: Full table of results for the task of predicting $E_{gap}(exptl)$. Clusterings for LOCO-CV were done with magpie featurisation, and kernelised LOCO-CV was magpie featurisation with RBF kernel.

When recreating these tasks with RFs rather than the ensemble learning methods used here, in regression tasks (D_{max} and ΔT_x prediction), marginally outperform the representations we investigate in section 3.1 in some metrics (table tables S12 and S13). The performance difference between the representation used in this work and the other CBFVs investigated (both with and without domain knowledge) was significantly smaller in the D_{max} dataset. This fits previous findings that specialised domain knowledge becomes less important as dataset size increases [6], as the D_{max} training dataset size was almost an order of magnitude larger than that of the ΔT_x (4725 and 497 respectively). Regardless of the CBFV used all RFs failed to predict reliably in LOCO-CV, suggesting an RF is not suitable for extrapolation in this task (tables S12 and S13).

In recreation of the GFA classification task, the representation used in this study performed similarly to other CBFV's investigated (table S14). This fits with the hypothesis that for larger datasets CBFV domain knowledge becomes less important with size as the training dataset was size 5053.

S3.5 Extracting knowledge from DFT: Experimental band gap predictions through ensemble learning

This work focuses on the use of neural networks to predict DFT calculated band gaps and transferring this knowledge to retrain them on a smaller set of experimental measurements, finding the transfer learning to be advantageous [4]. They use *magpie* featurisation on DFT data extracted from the Materials project and AFLOW as well as experimental data compiled in previous work [3][1][10].

As the transfer learning approach used in the case study is not applicable to RFs, in recreating this case study we considered this to be 3 separate datasets:

• $E_{\text{gap}}(\text{DFT})$: Predicting the band gap of materials calculated using DFT.

$\frac{1}{80\%/20\% \text{ train/test split}}$								
CBFV	dimensions	r^2	mse	rmse	mae			
magpie	88	0.77	0.621	0.788	0.523			
CompVec	119	0.66	0.922	0.960	0.663			
Oliynyk	176	0.78	0.605	0.778	0.513			
fractional	476	0.71	0.790	0.889	0.552			
$RANDOM_{200}$	800	0.70	0.819	0.905	0.616			
JARVIS	1752	0.79	0.572	0.756	0.502			
	88	0.54	1.23	1.11	0.841			
	119	0.54	1.23	1.11	0.839			
Pandom Projection	176	0.56	1.18	1.09	0.819			
Random Projection	476	0.59	1.11	1.05	0.796			
	800	0.60	1.09	1.04	0.790			
	1752	0.61	1.04	1.02	0.769			
LOCO-CV scores								
CBFV	dimensions	r^2	mse	rmse	mae			
magpie	88	0.54	1.19	1.09	0.833			
CompVec	119	0.32	1.77	1.32	0.988			
Oliynyk	176	0.57	1.12	1.05	0.803			
fractional	476	0.40	1.56	1.24	0.922			
$RANDOM_200$	800	0.42	1.51	1.22	0.953			
JARVIS	1752	0.58	1.08	1.03	0.795			
Kernelised LOCO-CV scores								
CBFV	dimensions	r^2	mse	\mathbf{rmse}	mae			
magpie	88	0.77	0.608	0.779	0.533			
CompVec	119	0.63	0.982	0.991	0.686			
Oliynyk	176	0.78	0.584	0.764	0.520			
fractional	476	0.73	0.708	0.841	0.561			
$RANDOM_{200}$	800	0.71	0.763	0.873	0.634			
JARVIS	1752	0.79	0.556	0.745	0.510			

Table S16: Full table of results for the task of predicting $E_{gap}(DFT)$. Clusterings for LOCO-CV were done with *magpie* featurisation, and kernelised LOCO-CV was *magpie* featurisation with RBF kernel.

=

80%/20% train/test split							
CBFV	dimensions	r^2	mse	rmse	mae		
magpie	88	0.77	0.602	0.776	0.524		
CompVec	119	0.63	0.955	0.977	0.673		
Oliynyk	176	0.78	0.581	0.762	0.513		
fractional	476	0.74	0.679	0.824	0.551		
$RANDOM_{200}$	800	0.73	0.728	0.853	0.614		
JARVIS	1752	0.79	0.555	0.745	0.504		
	88	0.54	1.20	1.10	0.834		
	119	0.54	1.20	1.10	0.834		
Random Projection	176	0.56	1.15	1.07	0.812		
	476	0.58	1.08	1.04	0.788		
	800	0.59	1.07	1.03	0.779		
	1752	0.60	1.03	1.02	0.765		
LOCO-CV scores							
CBFV	dimensions	r^2	mse	\mathbf{rmse}	mae		
magpie	88	0.53	1.20	1.09	0.840		
CompVec	119	0.32	1.76	1.32	0.986		
Oliynyk	176	0.56	1.13	1.06	0.805		
fractional	476	0.39	1.56	1.24	0.925		
$RANDOM_200$	800	0.42	1.50	1.22	0.950		
JARVIS	1752	0.58	1.09	1.04	0.797		
Kernelised LOCO-CV scores							
CBFV	dimensions	r^2	mse	rmse	mae		
magpie	88	0.76	0.613	0.783	0.537		
CompVec	119	0.62	0.981	0.990	0.686		
Oliynyk	176	0.77	0.592	0.769	0.524		
fractional	476	0.72	0.721	0.849	0.567		
RANDOM 200	800	0.70	0.775	0.880	0.635		
JARVIS	1752	0.78	0.567	0.753	0.515		

Table S17: Full table of results for the task of predicting $E_{gap}(DFT) \cup E_{gap}(exptl)$. Clusterings for LOCO-CV were done with *magpie* featurisation, and kernelised LOCO-CV was *magpie* featurisation with RBF kernel.

_

- $E_{\text{gap}}(\text{exptl})$: Predicting the band gap of materials measured experimentally.
- $E_{\text{gap}}(\text{DFT}) \cup E_{\text{gap}}(\text{exptl})$: Predicting the band gap of a dataset consisting of both DFT calculated and experimentally measured band gaps.

Experiments on which CBFV is most effective on these datasets showed that datasets $E_{gap}(exptl)$ and $E_{gap}(DFT) \cup E_{gap}(exptl)$ yielded similar results, which is logical as they are very similar datasets. In these datasets domain knowledge based CBFVs outperformed those without domain knowledge, with *JARVIS* slightly outperforming all other CBFVs(tables S16 and S17).

The larger datasets saw the performance difference caused by different CBFVs become smaller with the range of r^2 between different CBFVs becoming 0.050 smaller (the range was 0.16, 0.15, and 0.21 in the datasets 1, 2, and 3 respectively). While a dataset size increase usually sees the benefit of domain knowledge decrease, here the decrease of that benefit is less. Here datasets of more than 35,000 compounds still showing a notable benefit to domain knowledge.

We also present a full tables of results this dataset (tables S15 to S17)

References

- [1] Stefano Curtarolo, Wahyu Setyawan, Gus L.W. Hart, Michal Jahnatek, Roman V. Chepulskii, Richard H. Taylor, Shidong Wang, Junkai Xue, Kesong Yang, Ohad Levy, Michael J. Mehl, Harold T. Stokes, Denis O. Demchenko, and Dane Morgan. Aflow: An automatic framework for high-throughput materials discovery. *Computational Materials Science*, 58:218–226, 2012.
- [2] Daniel W. Davies, Keith T. Butler, and Aron Walsh. Data-Driven Discovery of Photoactive Quaternary Oxides Using First-Principles Machine Learning. *Chemistry of Materials*, 31(18):7221–7230, sep 2019.
- [3] Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, and Kristin a. Persson. The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1(1):011002, 2013.
- [4] Steven K Kauwe, Taylor Welker, and Taylor D Sparks. Extracting Knowledge from DFT: Experimental Band Gap Predictions Through Ensemble Learning. Integrating Materials and Manufacturing Innovation, 9(3):213–220, 2020.
- [5] Fleur Legrain, Jesús Carrete, Ambroise Van Roekeghem, Georg K.H. Madsen, and Natalio Mingo. Materials Screening for the Discovery of New Half-Heuslers: Machine Learning versus ab Initio Methods. *Journal of Physical Chemistry B*, 122(2):625–632, jan 2018.
- [6] Ryan J Murdock, Steven K Kauwe, Anthony Yu Tung Wang, and Taylor D. Sparks. Is Domain Knowledge Necessary for Machine Learning Materials Properties? Integrating Materials and Manufacturing Innovation, 9(3):221–227, 2020.
- [7] Valentin Stanev, Corey Oses, A. Gilad Kusne, Efrain Rodriguez, Johnpierre Paglione, Stefano Curtarolo, and Ichiro Takeuchi. Machine learning modeling of superconducting critical temperature. npj Computational Materials, 4(1):1–14, dec 2018.
- [8] Logan Ward, Ankit Agrawal, Alok Choudhary, and Christopher Wolverton. A general-purpose machine learning framework for predicting properties of inorganic materials. *npj Computational Materials*, 2(1):1–7, aug 2016.
- [9] Logan Ward, Stephanie C. O'Keeffe, Joseph Stevick, Glenton R. Jelbert, Muratahan Aykol, and Chris Wolverton. A machine learning approach for engineering bulk metallic glass alloys. Acta Materialia, 159:102–111, oct 2018.
- [10] Ya Zhuo, Aria Mansouri Tehrani, and Jakoah Brgoch. Predicting the band gaps of inorganic solids by machine learning. The Journal of Physical Chemistry Letters, 9(7):1668–1673, 2018. PMID: 29532658.