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S1. Implementing detail of autonomous synthesis platform of 

HAORI 

The overall structure of HAORI:
The HAORI is designed considering portability, expansibility, and universality. We aim to build a 
modular platform with all essential organic reaction functions. Also, flow chemistry reaction has 
been widely implemented in the scale production of chemical engineering. Still, it has seldomly 
been used in labs because of its low expansibility and high design cost. Aiming to solve those 
problems, we designed a modular flow synthesis platform based on a kit developed by Swagelok 
to testify the SpecSNN optimization module we proposed, which can be seen in Figure  S1. This 
figure explains the working cycle of HAORI and indicates the collaboration between hardware 
(synthesis platform) and software algorithms. By listing out the time point of each step, the 
importance of introducing a time-dependent algorithm is well illustrated. Like most chemical 
engineering designs, the reactants are pushed with high pressure to go through and merge in the 
tunnel. After that, the mixture will enter the pre-equipped heat tower and contact solid-state 
catalysts, dispersed and attached inside the tube. The mixture will remain in the tower for a 
particular time for reaction, while some will be extracted out through a bypass valve for in-situ 
characterization. After the reaction has reached the time limit, all the remaining mixture will be 
pushed out to the collector outside, and various solvents will wash the tunnel. Finally, the whole 
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tunnel will be dried using high-pressure argon or nitrogen.  

Figure S1, the working methodology cycles of HAORI. The blue arrows indicate collaboration 
between the testing procedure and data processing procedure, while the green ones illustrate the 
training and backpropagate cycle, which receives processed FT-IR results and predicts suitable 
reaction temperature and corresponding TAs results. After the TAs result comes out in 3 minutes, 
it will be used for evaluation and backpropagation to revise the weight in SpecSNN. 

Hardware representing symbols in HAORI:
The hardware representation is developed based on the MAOS system1, which kept developing to 
support the latest reaction platforms. Comparing with the initial design of MAOS, the hardware 
modules of HAORI are modularized, which leads to better expansibility. Here, we listed all the 
symbols representing modules in HAORI hardware and illustrated all the parameters they support.

Symbol Module Parameters Parameter 

vector

𝐺 Gas supplier gas flow rate, start time [𝑓𝑟,𝑇𝐺]

𝐿𝑃𝑀 Liquid preparation 

module

channel, volume, speed, start 

time

[𝐶, 𝑉𝑖,𝑣,𝑇𝑙𝑝𝑚]

𝑆𝑃 Syringe pump injection volume, injection [𝑉, 𝑣,𝑇𝑆𝑃]



speed, start time

𝑅 Reactant inputs 

module

On/off, reactant type [𝑆, 𝑟]

𝐻𝑆𝐶 Heater & Solid 

Catalysts

Setting temperature, current 

temperature, setting catalysts. 

[𝑇,𝑇𝑖 𝑐𝑎]

𝐶𝐵𝑉 Counterbalance 

valve

Setting pressure, current 

pressure

[𝑃, 𝑃𝑖]

𝑃𝑉 Pressure adjust 

valve

Setting pressure, current 

pressure

[𝑃, 𝑃𝑖]

𝑂𝑃𝑇 Product output On/off, product type [𝑆, 𝑝]

𝑉3 3-way valve Connecting state [𝑐]

𝐹𝑇𝐼𝑅 FTIR spectrometer Integral time, resolution, start 

time

[𝑇𝑖, 𝑅, 𝑇𝐼𝑅]

𝑇𝐴𝑆 TA spectrometer Pump intensity, temporal 

resolution, start time

[𝑃𝑖, 𝑡�𝑅, 𝑇𝑇𝐴𝑆]

𝑆𝑝𝑒𝑐𝑆𝑁𝑁 SpecSNN optimizer Input spectrums, input state 

(temperature), passed time

[𝐹𝑇𝐼𝑅, 𝑇𝐴𝑆, 𝑇𝑖, 𝑡]

𝑆𝑉𝑇 Common Solvents Solvents type [𝑆𝑖]

𝑊𝑇 Waste Tank / /

𝐺𝐿𝑆 Gas liquid seperater / /

Table S1. Specification of experimental instrument symbols and parameter vectors in HAORI 
instructions.
 
Operator Representation Usage example



symbol

∙ Reagent transfer  (Transfer  with )𝑅1 ∙ 𝑆𝑃1 𝑅1 𝑆𝑃1

+ Fusion of reagent  (Adding  into )𝑅1 + 𝑅2 𝑅2 𝑅1

× React with 

environment
 (  react in heater & 𝑅1 × (𝐻𝑆𝐶 + 𝐶𝐵𝑉) 𝑅1

solid catalysts with support of 

counterbalance valve)

→ Characterization  (Take PL measurement of 𝑃𝐿→𝑅1 × 𝐴

 in Chembox)𝑅1

∪ Time loop operation  (  react in heater & 𝑅1 × 𝐻𝑆𝐶 ∪ 𝑡(100) 𝑅1

solid catalysts and update every 100s)

Table S2. Specification of operators in HAORI instructions.

Details of the parameter of each channel are listed in Table S1. Considering that the experiment 
we proposed to optimize does not require such rigorous conditions, we use all seven channels to 
conduct the same experiment to maximize the reaction efficiency. Unlike traditional organic 
reactions, which require a large volume of reactants, the tunnel's flow chemistry only needs less 
than 10 ml of mixture to conduct experiments and characterization, which is economical and 
environmentally friendly. 

Channel 
No.

Input 
No.

Max. 
Pressure 

(Bar)

Max 
Temperature 

(°C)

Gas-liquid 
Separation

Introduction & Special 
Function

1 3 10 600 Yes Multiple inputs, high pressure
2 2 20 260 No High Pressure.
3 1 8 260 No In-situ monitor of products.
4 2 20 260 No High Pressure.
5 1 10 600 No High Temperature.
6 2 8 260 No In-situ monitor of products.
7 2 10 260 Yes Normal.

Table S3. The detail of different channel functions. Note that all channels can do most simple 
reactions once the suitable heterogeneous catalysis tunnels are equipped.

The connection between hardware:
The whole communication and software control platform is written in Python 3.7, with a deep 
dependent on packages including PySerial, ZeroRPC, and Qt. The main program aims to order the 
whole reaction process as requested, precisely controlling each liquid channel’s on/off time and 



pressure and the condition of valves and heaters. An independent thread will be called and 
autonomously killed after each subtask. This design could reach high stability as no system failure 
was reported in a 48-hour stress testing. During the experiment, errors only popped two times in 
more than 200 hours because of the disconnection of wire caused by moving and reassembling.

Sample Injection and Spectrum Collection:
The sample quality is limited for in-situ spectrum collection compared with purified ones. Thus, 
the sample collection procedure shall be well designed to avoid possible pollution and secure a 
uniform distributed liquid while testing. As required by the TAs testing, the sample shall not be too 
turbid, which may cause scattering while excited by the laser pump. In practice, all in-situ samples 
are diluted in the proportion of 1:5 through a Y-coupling triple valve by o-xylene (the solvent used 
in reaction) before both testings. Then, the sample will first be pumped through PTFE and stainless-
steel tube into an in-situ FT-IR spectrometer and tested. The result will be available within 2 
minutes after extraction. The sample will be 1:10 re-diluted under the same condition above 
before TA spectrum testing to avoid possible scattering problems. After mixing, the sample will be 
pumped to a cuvette before the 350 nm laser pump for TA spectrum testing. The detailed setup 
of the TA spectrometer can be viewed in Figure S2. Considering the relatively low signal-noise ratio 
for the TA spectrum and possible noise influence, the same testing procedure will be repeated five 
times, while the final spectrum will be the average of the middle three. Here, a researcher will 
monitor the whole injection and exciting procedure to prevent any possible danger. 

Figure S2. The TA spectroscopy and the light path through the testing. This equipment is set up 
under the platform for better space utilization. Note that some of the accessories outside are not 
shown in the figure.  

Time-dependent factor handling:



Unlike most data optimization tasks, in-situ optimization takes time to generate data and train 
SpecSNN simultaneously. Therefore, a specific algorithm needs to be designed to handle the time 
gaps between the tested state and the current state of the reaction environment. Here, as 
illustrated in Figure S3, SpecSNN takes full use of temporal segmentation, which generates several 
pseudo midpoints (  and ) between two tested states (  and ). These 𝑇(𝑛 + 1) 𝑇(𝑛 + 2) 𝑇(𝑛) 𝑇(𝑛 + 3)

points are functional as experiment and prediction states simultaneously, which fill the gap caused 
by the low testing rate of FT-IR and TAs. In practice, as marked in Figure S1, when the  starts 𝑆𝑃𝐶

to pump the mixture into the testing bypass at , the algorithm will not work immediately. It 𝑇(𝑛)

will wait until FT-IR results become available in ~1 minute. After that, the SpecSNN in-situ 
optimization will be triggered, which processes FT-IR results to spiking coding, and then input them 
to predict a suitable temperature and the corresponding TAs results. When the TAs results get 
available, they will be used first to finetune the predicted temperature and then functional as the 
validation dataset to adjust the weights of hidden layers in SpecSNN. It shall be recalled here that 
the original training set is generated by pre-executed auto experiment results in 72 hours. As the 
testing time of TAs could vary, if the result comes after 10 minutes (where the next timestep 
characterization started), there will be no space for finetune but only weight adjustment. This loop 
will keep going until a satisfactory result of TAs is reached, or it seems to have no optimization 
possibility. 

Figure S3. The TA spectroscopy and the light path through the testing. This equipment is set up 
under the platform for better space utilization. Note that some of the accessories outside are not 
shown in the figure.  

After testing:
The bypass valve will be closed autonomously after the test extraction has been completed, and 
nitrogen will be injected to balance the pressure difference caused by extraction. After collecting 
two spectra, the sample will be pumped into the waste tank. The tube will then be washed using 
dichloromethane and ethanol at maximum injection speed & pressure to remove any possible 
residual liquid. Finally, nitrogen will be injected to dry out the tube. The whole process can be 
finished autonomously in 2 minutes. 



Basic Spectrum Treatment:
After the reactant is extracted in the midway of the heating tower during the characterization, we 
first receive the in-situ FTIR spectra after 1 minute. After necessary treatment, including baseline 
subtraction and intensity normalization completed using the python package spectrum, all peaks 
with intensity larger than 4% will be marked and recorded, while other information will be directly 
dropped. This peak diagram will be used to compare with the previous one and get the differential. 
As stated above, this differential will be further segmented over time and transferred into spiking 
coding in the resolution of 10 seconds and a 0.1% absorption rate. In this way, there will be 60 
intermediate input spiking neurons generated between two in-situ tests for one segment in the 
spectrum. Each neuron integrates the pseudo-event-based spectrum signal over time and 
generates spikes if the membrane potential reaches the threshold. Together, these spiking 
neurons form feature maps of this time point and will be further treated by SpecSNN neurons. This 
SpecSNN is trained to predict TAs lifetime over time and suggest reaction condition alternation. 
After receiving the TAs result, the weight of SpecSNN neurons will be adjusted according to SLAYER 
with the support of BPTT.
For the TAs spectrum, we handle the raw data according to the steps listed in Figure S4.

Figure S4. The analysis procedure of TAs data. We need to fit the short lifetime of TAs to analyze 
the relative dielectric constant of the product.

Where the double exponential decay fitting equation is defined as:

𝑦 = 𝐴1 ∙ exp ( ‒
𝑥
𝑡1

) + 𝐴2 ∙ exp ( ‒
𝑥
𝑡2

) + 𝑦0          (𝑆0)

Here, we only consider the short lifetime part as they contribute more to the dielectric constant 
of the product.

Methods:
Autonomous synthesis of monomer using high-throughput flow synthesis platform:
Here, we illustrate the synthesis method of the final proposed structure. Synthesis for all the other 
structures can follow similar procedures with the alternation of monomer type to gain different 
products. The proportion of reactants is the same, and we only change the reactant type for every 
different synthesis series in the optimization tree. This section translates all the simplified HAORI 
instructions in Figure 1(A).

Preparation of reagent into LPM: 



All the solid reagents, including reactant monomer 9H-carbazole (17g, 0.1mol), tBuONa (58g, 
0.6mol), and ligand XPhos (2-dicyclohexylphosphino-2',4',6’-triisopropylbiphenyl, 12g, 12mol%), 
are pre-weighted and dissolved in 1000 ml of o-xylene in a sealed flask under the protection of 
nitrogen to form mixture one and pumped into . During the storage, LPM will keep heating 𝐿𝑃𝑀

and stirring the mixture to maintain homogeneous phase. 

Step 1. Reaction in tube

 𝑂𝑃𝑇 = (𝑅1 + 𝑅2 + 𝑅3 + 𝑅4) ∙ 𝑆𝑃𝐼 ∙ 𝐿𝑃𝑀 × (𝐻𝑆𝐶 + 𝐶𝐵𝑉 + 𝐺𝐿𝑆 + 𝐺𝐴)
The  is pretreated by attaching 100mg of treated 6mol% Pd(OAc)2 h to the liquid tunnel (PTFE 𝐻𝑆𝐶

or stainless steel), and wrapped next to the heating tower for best heating efficiency. After the 
reaction system is set up, the whole tunnel will first be degassed by freeze-pump-thaw cycles 

under argon ( ). Then, the mixture will be kept stirring and slowly (1ml/min) injected to various 𝐺𝐴

channels using   of the flow synthesis module for five minutes. Meanwhile, will 𝑆𝑃𝐼 (𝐼 = 1 𝑡𝑜 3) 𝑆𝑃4 

start injecting the only liquid reactant, monomer 1-bromo-4-pentylbenzene (0.1135g, 0.5mmol) 
in  at 0.02 ml/min for 5 minutes to acquire a uniformly distributed mixture in the tube. After 𝑅4

the injection is completed, the reaction mixture will be pushed to the heating tower by argon, and 
the heat will start with a 415K temperature as the initial state.  is set to maintain 5 Bar of 𝐶𝐵𝑉

pressure in the tunnel, while  keeps on discharging pumped argon out. 𝐺𝐿𝑆

Step 2. Characterization

 𝐹𝑇𝐼𝑅→(𝑂𝑃𝑇 + 𝑆𝑉𝑇) ∙ 𝑆𝑃𝐶 ∙ 𝑉3 ∪  𝑡(600)

 𝑇𝐴𝑆→𝐹𝑇𝐼𝑅 ∙ 𝑆𝑃𝐶 ∪  𝑡(600)
These two lines stand for the characterization procedure. About 0.2ml product will be extracted 
from  by  and mixed with 1.8 ml o-xylene in  through  every 600s. Then the mixture 𝐻𝑆𝐶 𝑆𝑃𝐶 𝑆𝑉𝑇 𝑉3

will pass both characterization spectrometers: the  and the  excited by a 350 nm light 𝐹𝑇𝐼𝑅 𝑇𝐴𝑆

pump. These two spectrometers are arranged in a line, as illustrated in Figure 1. After all the 
spectra data is processed into the neural network, the testing reactant will be pushed directly to 
the waste tank, while the optional optimization action will then be performed in the reaction 
chamber. Moreover, a fast ejection pump was also connected between all reactors and the waste 
tank to perform fast replacement if the feedback from the algorithm shows there is no value to 
continue.

Step 3. SpecSNN in-situ optimization

 𝑆𝑝𝑒𝑐𝑆𝑁𝑁[𝐹𝑇𝐼𝑅,𝑇𝐴𝑆,𝑇𝑖,𝑡]
As illustrated in the main text, this section receives both spectra inputs and condition inputs.  
Finally, it provides the optimized condition for the next cycle, mostly in our case, to the . After 𝐻𝑆𝐶

the altering instruction is sent through the processor, it typically takes 40-80 seconds to reach the 
objective state. However, the condition based on analyzing and making the decision is very likely 
to vary during this process (7 minutes after extraction). Therefore, implementing a time-
dependent optimizer, SpecSNN is highly essential. The reaction and characterization step will keep 
running until the difference among the last three characterizations reaches the required accuracy 
level, indicating there is no other product generated or the time exceeds the maximum (240 
minutes). After the one reaction is complete, the mixture will be discarded. The flask will be 
washed with dichloromethane and ethanol and finally dried and vaccinated for the subsequent 



trial. For the sample kept trial, after cooling to room temperature, the reaction mixture was added 
to water and then extracted with dichloromethane (DCM). The combined organic layers were dried 
over anhydrous magnesium sulfate. After filtration and evaporation, the crude product was 
purified by column chromatography on silica gel (hexane/ethyl acetate=6:1, v/v). 

Final product sample preparation and characterization:
To testify to the performance of the low-DC polymer we proposed, we selected the optimized 
sample from the previous exploration procedure. We manually polymerized them to test their 
dielectric constants, where the operation details are listed below. 
Polymerization:
The monomer gained in the optimized reaction (9-(4-pentylphenyl)-9H-carbazole, 19.0 g, 60.5 
mmol) and TFA (8.8 g, 78.7 mmol) were charged into a flame-dried 250 mL three-necked flask 
equipped with an overhead mechanical stirrer and then dissolved using dichloromethane (48.5 
mL). When the mixture was completely dissolved, the solution was cooled to 0 °C using an ice bath 
and held at 0 °C for 30 min to lower the internal temperature of the flask. TFA (8.8 g, 78.7mmol) 
and TFSA (86.2 g, 574.6 mmol) were then added slowly in turn with continuous stirring, and the 
solution was heated to 40 °C after the complete addition of TFSA and maintained at that 
temperature for 72 h. Finally, the viscous dark-brown mixture was precipitated into fresh 
methanol, and the fiber-like product was filtered and washed with hot methanol. The resulting 

solid was dried at 80℃ in a vacuum oven for 24 h.

Spin Coating:
The final product is re-dissolved in DMF with 1M concentration, then spin-coated under the N2 
protection at 1500 rpm, 60 °C on a silicon slice for refractive index testing. After spin-coated, the 
sample was kept drying for 10 minutes until all of the remaining liquid disappeared.

S2. Algorithm Details & Comparison:

Low DC polymer tree generation:
Structures are all coded in Simplified molecular-input line-entry specification (SMILES), which 
would not lose much information in polymer cases as they are very similar to one-dimensional 
structures. Based on the dimensions or features defined, the following classification progress 
would be performed by using the random-forest2 (RF) based model on Polymer Properties 
Database3 (PPD) and Lithium Conducting Polymer Database4 (LCPD).

Input Preprocessing
Like many video datasets, inputs into SNN need to be converted into spiking coded instead of 
standard pixel coded. We designed our spectrum spiking conversion based on the PIX2NVS 
conversion5 for video, as illustrated in Figure S4 and below.



Figure S5. The flow diagram for the conversion method from 1D spectrum to 1D spiking coded 
spectrum. For example, given 2 FTIR spectrums in the resolution of 1 cm-1 with 10 min gap and 
oversampled to 1s per event frame, if we set the resolution , then the spiking tensor shape  𝑟 =  30

would be (3400, 30), which means that all the changing within 30s resolution period would 
contribute to the same point on the spiking feature map.

SpecSNN Details

To perform feature extraction, we first subdivide a continuous 1D spectrum data into a small 
segment in the spatial domain. Pixelate. Then the values will be converted into log-intensity 
approaches through:

𝑙𝑥 = { 𝑙𝑥,  𝑙𝑥 < 𝑇𝑙𝑜𝑔
ln (𝑙𝑥 ‒ 𝑇𝑙𝑜𝑔) + 𝑇𝑙𝑜𝑔,  𝑙𝑥 ≥ 𝑇𝑙𝑜𝑔 �          (𝑆1)

Where  is the trigger point to switch from linear to log-intensity, for which we typically set it 𝑇𝑙𝑜𝑔

to 5% of the maximum value. This segmentation would lift the weight of small peaks to help 
generate spiking events. The temporal subdivision would then be performed to scale up spiking 
data. Here, we linearly subdivide the difference between two temporal adjacents tested 
absorption values and interpolate 19 records with resolution . We equally divided the 𝑟 = 30 𝑠

change of FT-IR into 10 minutes to 20 segments. During this progress, the spatial size keeps 
invariant. We have tested several nearest neighbor algorithms that consider adjacent spiking 
segments; however, all without significant performance improvement. 
𝑑𝑖𝑓𝑓𝑥,𝑛 = 𝑙𝑥,𝑛 ‒ 𝑙𝑥,𝑛 ‒ 1                (𝑆2)

For every segment , the algorithm will then check whether the difference exceeds the 𝑠(𝑙𝑥, 𝑡𝑛)

threshold , which represents the action potential in neuroscience. 𝑇𝐴𝑃

𝑃𝑥,𝑛 = {0,  𝑑𝑖𝑓𝑓𝑥,𝑛 < 𝑇𝐴𝑃
1,  𝑑𝑖𝑓𝑓𝑥,𝑛 ≥ 𝑇𝐴𝑃 �          (𝑆3)

Where  is defined to be about 0.3% of the maximum of log-intensity. Furthermore, if the 𝑇𝐴𝑃

difference largely exceeds the  for two times minimum, several further interpolation points 𝑇𝐴𝑃

would be inserted between time segments to represent the rapidly changing value. Thus, the 
transformation from scaler to spiking rate coded 1D spectrum is completed. 

After the generation input feature map as illustrated in the main text, in the temporal aspect, 𝑆𝑖(𝑡) 



the resolution will be changed to ℎ, as convoluted and combined with several signals. Like the 
convolution on a scaler data frame, all spike series generated inside one kernel will contribute to 
one SRM neuron at position . By following the integrate-and-fire (IF) model, SRM neurons will (𝑘)

also generate spike series overtime when their membrane potential spiking input is generated for 
further recurrent learning. This process collects information from original spiking features, 
generates spikes when feature-triggered potential reaches the action potential of SNN, and finally 
transmits the potential to postsynaptic neuron along with the temporal domain.

The SpecSNN network design and training details are pre-illustrated and could be referred to in 
many previous works6-11. Specifically, as illustrated in Figure 3(b), the concatenated feature map 
with the shape of (𝑗, ℎ) is transmitted to SpecSNN neuron, consisting of a spiking convolution part 
and a spiking LSTM part. Additionally, it also receives a hidden spiking state representing the 
previous combinatorial states. At the beginning time, the hidden spiking state will be all 0 
initialized, indicating a zero prior knowledge state to perform a fully in-situ data-driven reaction 
without any prior knowledge. In addition, the condition input, including the variation of 
temperature and stirring speed, are also rate-coded and inputted as condition parameters. It shall 
be noted that the condition input is purely authentic. It can be transmitted by the autonomous 
platform of HAORI every second, while both FT-IR and TAs results are surrogated by interpolation 
to provide enough training set for SpecSNN. 

Figure 3(c) illustrates that the entire SpecSNN structure coupled with three layers of deep 
architecture contains both temporal and spatial information, composed of three cascaded 
SpecSNN neurons. Except for the first layer, which directly extracts the information from the 

feature map, other layers receive the  from the prior one and generate another set of output 𝑆𝑜(𝑡)

with its weight. Especially for the last layer, a fully connected neuron will be linked to   for 𝑆𝑜(𝑡)

dimension reduction and derive two different scalers: the predicted TAs and the new condition to 
be changed. All neurons' weights will be updated by backpropagation through time (BPTT) to 
ensure the learning efficiency and product quality after the tested TAs result is received (4-7 min 
after extraction).

The spiking convolution part includes a three-layer convolution and poor pairs, followed by a fire 
layer which concludes the generated spiking and output to the spiking LSTM layer. For better 
testing accuracy, five layers of the same SpecSNN neurons are cascaded with only differences at 
the convolution and pool kernel size, making our SpecSNN a deep time-dependent recurrent 
spiking neural network. The structure of the SpecSNN neuron with time expansion and deep layers 
can be found in Figure S6. The gray part on the left indicates the spiking convolution feature 
extraction parts, which include three cascading three-layer spiking convolution parts. Inside of 
each consists of a spiking pool layer, followed by a spiking convolution layer, and a fire layer works 
under integrate and fire model, which follows by:

𝑃 = {0,  𝑖𝑓 𝑡 < 𝑇𝑚𝑎𝑥 ‒ 1
𝑃,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           (𝑆4)�

Here,  represents the input potential tensor, and  indicates the maximum possible number 𝑃 𝑇𝑚𝑎𝑥

of timesteps, also denoting the temporal segmentation. Consequently, this results in a spike-wave 



will be a tensor containing mainly zero values, where non-zero potential only occurs in the last 
time interval of SNN sampling. Moreover, for the size of spiking convolution and pooling, it should 
be noted that all kernels in each layer have different lengths, which is used to fit the proper size of 
the feature map. 
Finally, the spiking pooling layer works like the traditional pooling layers. For the spiking time 
coded input. The temporal-based pooling will output the earliest spike in the pooling window for 

the spiking time-coded input. For example, if an input feature is in the shape of , where 𝑇𝑚𝑎𝑥 × 𝐿𝑖𝑛

 is the length in a 1D spectrum map. We have a pooling window with length  and stride  with 𝐿𝑖𝑛 𝑃 𝑅
padding , and the output will be in the shape of:𝐷

𝐿𝑜𝑢𝑡 =
𝐿𝑖𝑛 + 2 × 𝐷

𝑅
                (𝑆5)

Figure S6. The structure of deep SpecSNN is used to handle input and plan for the next step after 
time T+n (usually 10 min gap between tested state and optimization state as stated above). 

The yellow parts on the right represent the Spiking LSTM parts, which is the crucial point for 
realizing an accurate time-dependent prediction and suggestion of experiment optimization. The 
whole structure could be regarded as a traditional LSTM which is transferred to receive spiking 

inputs, which consists of an input gate layer  to receive input state , a forget gate layer , 𝑖𝑡 𝑆𝑖(𝑡) 𝑓𝑡

an output gate layer  to generate output impulse , a hidden state , and a cell current state 𝑜𝑡 𝑆𝑜(𝑡) ℎ𝑡

. The relationship between these states and gates could be concluded by the following formula 𝑐𝑡



set S5, as shown in Figure S7. Unlike the traditional LSTM structure, which directly trains the 
weight in the input layer. The spiking convolution layer further determines the weight parameter 
in our design. 
𝑖𝑡 = 𝜎(𝑆𝑝𝑖𝑘𝐶𝑜𝑛𝑣𝑥𝑖(𝑆𝑖(𝑡)) + 𝑆𝑝𝑖𝑘𝐶𝑜𝑛𝑣ℎ𝑖(ℎ𝑡 ‒ 1) + 𝑏𝑖)
𝑓𝑡 = 𝜎(𝑆𝑝𝑖𝑘𝐶𝑜𝑛𝑣𝑥𝑓(𝑆𝑖(𝑡)) + 𝑆𝑝𝑖𝑘𝐶𝑜𝑛𝑣ℎ𝑓(ℎ𝑡 ‒ 1) + 𝑏𝑓)
𝑆𝑜(𝑡) = 𝜎(𝑆𝑝𝑖𝑘𝐶𝑜𝑛𝑣𝑥𝑖(𝑆𝑖(𝑡)) + 𝑆𝑝𝑖𝑘𝐶𝑜𝑛𝑣ℎ𝑖(ℎ𝑡 ‒ 1) + 𝑏𝑖)
ℎ𝑡 = 𝑆𝑜(𝑡) ∘ 𝑆𝑝𝑖𝑘𝑒𝑇𝑎𝑛ℎ(𝐶𝑡)
𝐶𝑡 = 𝑓𝑡 ∘ 𝐶𝑡 ‒ 1 + 𝑖𝑡 ∘ 𝑆𝑝𝑖𝑘𝑒𝑇𝑎𝑛ℎ(𝑆𝑝𝑖𝑘𝑒𝐶𝑜𝑛𝑣𝑥𝑐(𝑆𝑖(𝑡)) + 𝑆𝑝𝑖𝑘𝑒𝐶𝑜𝑛𝑣ℎ𝑐(ℎ𝑡 ‒ 1) + 𝑏𝑐)
(𝑆6)
Where  denote associated weights and biases for the network and:𝑏𝑥

𝑆𝑝𝑖𝑘𝑇𝑎𝑛ℎ(𝑥) = {𝑚𝑎𝑥⁡( ‒ 1,min (0, 𝑥 ∗ 2)),  𝑥 < 0
𝑚𝑎𝑥⁡(0,min (1, 𝑥 ∗ 2)),  𝑥 ≥ 0 �

(𝑆7)

Figure S7. The structure of a single SpecSNN neuron, with spiking LSTM layer and spiking conv 
layer, respectively. SpC_W in this figure represents the spiking convolution weight. All input, 
output gates, and inside states are marked on the figure with reference to the formula set S6.

Finally, all the SpecSNN model-related code can be found at https://github.com/Spider-
scnu/Spiking-ConvLSTM.

S3. Product Polymer Property analysis:

While the DC of the product polymer was successfully acquired through the optical method, as 
reported in Figure 4.D, the theoretical computation was further conducted to enhance the 
credibility of the experiment results. We approximated the polymer as a 1D crystal, and the optical 

https://github.com/Spider-scnu/Spiking-ConvLSTM
https://github.com/Spider-scnu/Spiking-ConvLSTM


property is then calculated and analyzed, as shown in Figure S8. The simulation result shows that 
the experimental results are similar in trend within the testing range compared with the 
calculation result. However, the experimental one has a much larger value than the theoretical 
one. We conclude that the main reason for this should be the defects inside the polymer compared 
with a perfect crystal.

Figure S8. The ab-inito simulated refractive index of the crystallized polymer in contrast with the 
experimental results. According to , the dielectric constant  is about 0.95-1.44 and the 𝑛 = 𝜀 𝜀

.𝜀0 ≈ 1.2

To further analyze the crystal structure of the tested polymer sample. The X-ray differential (XRD) 
spectrum is tested and analyzed, and the results can be seen in Figure S9. Though the crystal 
structure would not contribute much to the permittivity of a sample, the analysis is still conducted 
as a supplementary to its property. Here, the theoretical calculation result matches the XRD peak 
position, except for the one with the highest angle (31.7°). Although the intensity has a relatively 
significant difference compared with the experimental tested one, this is still acceptable. The main 
reason is that the crystallization of molecular crystals may involve some impurities due to the 
limitation of refinement and post-treatment after polymerization. Typically, there will be many 
monomers left in the final sample. 



Figure S9. The XRD result of polymer powder and crystal resolve result. Spectrum beyond 40 
degrees has been omitted because there is no peak present. 

S4. Further testing results for intermediate products during 

reaction optimization:

Hundreds of in-situ FT-IR and TAs results are generated during the whole reaction process. Many, 
including FT-IR and peak-fitted TAs results, have been reported above in the paper. Here, we 
present some raw TAs spectrum results concerning different timepoints. During the processing 
and analysis, only the peak intensity will be taken to perform a lifetime intensity fitting, which will 
result in curves like Figure 4.C. Unlike FTIR result, which is usually formatted 1D, the TAs result is 
in the shape of time, wavelength, and intensity, which is a very high data volume, however, with 



much of the noise. Therefore, it is better if we could refine and only use the main parameter, 
lifetime, for validation, which is the same for all reactions with absorption peak intensity change 
for at least one peak. If there exist multiple peaks, we can get multiple lifetimes as multiple 
parameters to represent reaction status. Using the peak intensity near 630 nm in the reaction we 
performed works well as ground truth for reaction status.

Figure S10. Some selected TAs result in the last run of SpecSNN. A: SpecSNN, structure 3, trail 1; 
B: CNN-RNN, structure 5, trail 1; C: SpecSNN, structure 6, trail 2; D: SpecSNN, structure 6, trail 13. 
Note that only 10 of 446 curves are plotted for view here. The TAs lifetime could be derived 
through these data using double-exponential fitting. 



Figure S11. Some typical failed trials during the optimization of SpecSNN and CNN-RNN. A), one of the 
in-situ FT-IR and TAs result of SpecSNN when the initial temperature is set to be too high (153°C, 
structure seven, trial four by SpecSNN). Both the quality and a fitted lifetime of TAs dropped 
significantly because the coagulation happened, and the catalyst was deactivated at high temperatures. 
B), another typical in-situ FT-IR and TAs result of SpecSNN when the initial temperature is too low 
(121°C, structure seven, trial one by CNN-RNN). Though the fitted lifetime of TAs keeps decreasing, as 
the figure shows, the reaction speed is too slow in comparison. Though the temperature keeps rising 
during the in-situ optimization period during the reaction, it still takes more than 150 minutes for both 
characterizations to reach a steady state.

To further analyze the optimization progress, especially the dropout policy and the influence 
of temperature on the whole process, we also selected two typical failed experiments during the 
synthesis of structure 7 in Figure S11.A. When the temperature is set to be too high at the 
beginning, as illustrated in Figure S11.A, though the FT-IR result indicates the reaction is in 
progress, the TAs lifetime would fluctuate and be challenging to fit, primarily because of the 
coagulation caused by high temperature. As the reaction continues, the new-formed peak in FT-IR 
result disappears, accompanied by the decrease of TAs lifetime caused by the deactivation of the 
catalyst. SpecSNN then dropped the whole reaction and started another trial with a much lower 
starting temperature (Figure S11.B), resulting in a slower reaction speed. In practice, both 
algorithms would determine an upper and lower bound of temperature using a similar method for 
all new reactions and then start further precise adjustments with extracted features from the 
neural network. The final temperature and stirring speed control are based on SNOBFIT 
algorithm12.
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