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1. Minimum energy paths 
 
Minimum energy paths were obtained from the Catalysis-hub energies of the reactants, products and 
transition states by fitting those values to single asymmetric Eckart barriers, 𝑉!"#$%&(𝑥)  (Equation S1) or 
a function composed of the product of a logistic function and skewed normal function (Equation S2). 
The choice of the fitting function was determined based on the error of the fit. 
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The Eckart barrier function depends on 3 parameters:  𝑉' is the height of the barrier, 𝑤' the width of 
the barrier, and 𝛼 the asymmetry of the barrier.  
 

𝑉-#!./0%1$2(𝑥) = 𝑣 ∗ C
𝐿

1 + 𝑒(3(+(+")
EFGGGGHGGGGI

6789:;9<	>?@<;97@

∗ J	2 ∗
1

𝜎√2𝜋
𝑒(

'
)A
+(B
C D

#
	M ∗

1
2 C
1 + erf P

𝑥 ∗ 𝑎 − 𝜇
𝜎√2

SE
FGGGGGGGGGGGGGGHGGGGGGGGGGGGGGI

E3F,FG	@7HIJK	G9:;H9L?;97@

				 (𝑆2) 

		 
The skewed normal barrier function depends on 5 parameters: 𝐿 the horizontal asymmetry of the 
barrier, 𝑘 the width of the logistic function, 𝑎 the horizontal asymmetry of the barrier, 𝑣 the overall 
vertical scaling of the barrier (used to fit activation energy), and 𝜎 the overall width of the skewed 
normal distribution.  
 
 

 

Figure S1: Plots of minimum energy path fits (skew logistic or Eckart) to reactions 1 and 2 reactant, product 
and transition state energies. See Table 1 of the manuscript for the list of reactions. Orange dots (•) represent  
(from left to right) the reactant, transition state and product. Blue line (¾) represents barrier fit to reaction 
coordinate. 
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Figure S2: Plots of minimum energy path fits (skew logistic or Eckart) to reactions 3 through 8 reactant, 
product and transition state energies. See Table 1 of the manuscript for the list of reactions. Orange 
dots (•) represent  (from left to right) the reactant, transition state and product . Blue line (¾) represents 
barrier fit to reaction coordinate. 
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Figure S3: Plots of minimum energy path fits (skew logistic or Eckart) to reactions 9 through 14 reactant, product and 
transition state energies (reactions 9-11) or minimum energy paths (reactions 12, 13, and 14) (See Table 1 of the manuscript 
for the list of reactions. Orange dots (•) represent reaction path images. When three dots are shown (from left to right) they 
indicate the reactant, transition state and product. When more dots are present the first and last indicate the reactant and 
product and the one at highest potential represents the transition state. The rest indicate images which connect these. Blue 
line (¾) represents barrier fit to reaction coordinate. 
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2. Discrete Variable Representation and 𝑪𝒇𝒇(𝒕) calculation 
 
Table S1: Description of the DVR grid parameters used to compute the flux-flux correlation function for each 
reaction. Randomly selected temperatures for each reaction are listed in the third column. The fourth column 
lists the spacing Δx in atomic units between points on the DVR grid. The fifth column lists the grid half-width, 
L. The complete grid covered the range [-L, L] with NDVR points.  

Nreact  Reaction T [K] 𝚫x [au] L [au] NDVR 
1 CH*+* ® C* + H* [300.0, 324, 356, 388] 0.001 10 20001 
2 COH*+*® C*+OH* [300.0, 308, 356, 381] 0.0075 8 2133 
3 CHOH*+*® CHO*+H* [300.0, 304, 355, 392] 0.00075 10 26667 
4 CH3

*+*® CH2
*+H* [150.0, 180, 277, 394] 0.0075 14 3733 

5 CH2OH*+*® CHOH*+H* [300.0, 301, 359, 394] 0.001 14 28001 
6 CH2

*+*® CH*+H* [150.0, 181, 310, 316] 0.005 8 3201 
7 CH3

*+*® CH2
*+H* [150.0, 212, 284, 326] 0.0075 8 2133 

8 CH3
*+*® CH2

*+H* [300.0, 326, 360, 382] 0.01 8 1601 
9 CHOH*+*® HCO*+H* [200.0, 241, 276, 340] 0.0075 14 3733 
10 CHOH*+*® CH*+OH* [200.0, 263, 278, 388] 0.005 8 3201 
11 CHO*+*® CO*+H* [250.0, 254, 310, 373] 0.005 8 3201 
12 COH*+H*® CHOH* [300.0, 321, 337, 383] 0.0025 10 8001 
13 CO*+H*® CHO* [250.0, 296, 336, 381] 0.0075 10 2667 
14 CH*+H*® CH2

* [250.0, 266, 321, 353] 0.01 12 2401 
 
Flux-flux correlation functions, 𝐶>>(𝑡), were computed using software developed in-house on a time grid 
with a time spacing Δ𝑡' =	35 [au time] for the first 2000 au time, and Δ𝑡) =70 [au time] for the rest of the 
time period. Calculations were run to a minimum stopping time of 10,000 [au time]. To calculate rate 
constant products 𝑘(𝑇) ⋅ 𝑄M(𝑇), the 𝐶>>(𝑡) time series data was integrated using a trapezoidal 
integration scheme until a change of 𝐶>>(𝑡) value of less than 1% was observed between 2 time points, 
or until time 8000 [au] was reached.  

3. Grid search on input features for 𝒌(𝑻) ⋅ 𝑸𝑹(𝑻) 
 

For every set of input features tested, the following GPR kernels, and every possible combination of 2 
kernels, were iterated over: 
 

• Matern 
• Radial Basis Function 
• Rational Quadratic 
• Pairwise Kernel 
• White Noise Kernel 

 
An initial kernel length scale of 1.0 and length scale bounds of (1x10-5, 1x105) were used for the Matern 
and Radial basis function kernels. Gaussian Process Regressor training was done using 50 optimizer 
restarts.  
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Table S2: Representation and kernel hyperparameter grid search results for temperature split data. Green shading indicates 
selected input features and kernel. Optimal representations and kernels were selected based on train set MAE. This search 
was done using the default value of the noise parameter, 𝛼 = 10$%&. Results in this table are from models trained with this 𝛼 
value. 

Representation Optimal kernel on train set  Train set MAE 

Coulomb Matrix 
Difference, inverse 
temperature, and 
reaction energy, all 
minmax scaled  

60.82 * Matern(length_scale=4.49, nu=1.5)  
+	15.52 * PairwiseKernel(gamma=1997.944185658677, 
 metric=linear) 

9.92x10-11 

 

Encoded Bonds 
Difference, inverse 
temperature, and 
reaction energy, all 
minmax scaled.  

7.692 * Matern(length_scale=29.6, nu=1.5)  
+	3062 * Matern(length_scale=29.6, nu=1.5) 

1.11x10-10 

 
Table S3: Representation and kernel hyperparameter grid search results for reaction split. Green shading indicates selected 
input features and kernel. Optimal representations and kernels were selected based on train set MAE. This search was done 
using the default value of the noise parameter, 𝛼 = 10$%&. Results in this table are from models trained with this 𝛼 value. 
 
Representation Optimal kernel on train set  Train set MAE 

Coulomb Matrix 
Difference, inverse 
temperature, and 
reaction energy, all 
rescaled (minmax 
scaler) 

1282 * Matern(length_scale=11.5, nu=1.5)  
+	0.01142 * Matern(length_scale=189, nu=1.5) 

5.69x10-10 

Encoded Bonds 
Difference, inverse 
temperature, and 
reaction energy, all 
rescaled (minmax 
scaler) 

7.312 * PairwiseKernel(gamma=0.004392928734334214,  
metric=linear)  
+ 3162 * Matern(length_scale=35.3, nu=1.5) 

6.60x10-10 
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4. Input features for 𝑪𝒇𝒇(𝒕) Cauchy Curve fit  
 

Coulomb matrix difference geometry features were used for the 𝐶>>(𝑡) Cauchy curve fit problem, as 
these were found to work best for the 𝑘𝑄(𝑇) problem. Coulomb matrix features, inverse temperature, 
and reaction energy were used as input features and were rescaled using the minmax scaler. The 
Cauchy fit scale parameter was also rescaled.  
 
Table S4: Best kernels based on train set MAE for Cauchy curve fit parameter prediction task. This search was done using 
the default value of the noise parameter, 𝛼 = 10$%&. Results in this table are from models trained with this 𝛼 value. 

Split  Fit kernel parameters Train set 
MAE 

Temperature 3162 * Matern(length_scale=1e+05, nu=1.5) + 
3162 * RationalQuadratic(alpha=1.02, length_scale=1.35) 

5.86x10-11 

Reaction 2232 * Matern(length_scale=2.15, nu=1.5) + 
1412 * PairwiseKernel(gamma=0.000679, metric=linear) 

6.71x10-11 

 

5. Predicted 𝒌(𝑻) ⋅ 𝑸𝑹(𝑻) using temperature split 
 
Here we report the role of undersampled temperature values on the 𝑘(𝑇) ⋅ 𝑄#(𝑇) prediction accuracy 
as a function of temperature (Figure S4). 
 

 
 
 
 
 
 
 
 

Figure S4: (y-axis left hand side) count of entries in 
training dataset binned by temperature (x-axis) 
compared to (y-axis right hand side) standard deviation 
on predicted value of 𝑘(𝑇) ⋅ 𝑄'(𝑇) for test set entries.  
We see that where the density of training points is higher 
the predicted error is lower, as expected. 
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6. Arrhenius Plots for reaction-wise test set predictions 

 
 

 

Figure S5: Predicted value of reaction rate 
constant product as a function of 1/T for the 
reaction COH*+* C*+OH* on Rh(111)), taken 
from the test set (Table 1 – reaction 2).  

 

Figure S6: Predicted value of reaction rate 
constant product as a function of 1/T for the 
reaction of CH3

*+*® CH2
*+H* on Ir(111), taken 

from the test set (Table 1 – reaction 7).  
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Figure S8: Predicted value of reaction rate 
constant product as a function of 1/T for the 
reaction of CH3

*+*® CH2
*+H* on Pt(111), taken 

from the test set (Table 1 – reaction 8).  

 

Figure S9: Predicted value of reaction rate 
constant product as a function of 1/T for the 
reaction of COH*+H*® CHOH* on Cu(100), 
taken from the test set (Table 1 – reaction 12).  

 


