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Table S1 Examples of simple quantum circuits and mathematical expressions.

NOTE: for simple expression, the results for  and  are used for  (  in Eq 4 and Eq 5).𝑅𝑥(2𝑡) 𝑅𝑦(2𝑡) �̂� 𝑡↦2𝑡

Circuit 𝑉 𝑈 �̂� = 𝑓𝜃(𝑥)

𝑅𝑥(𝑥) - 𝑐𝑜𝑠(2𝑥)

𝑅𝑥(cos ‒ 1 𝑥) - 2𝑥2 ‒ 1

𝑅𝑥(cos ‒ 1 𝑥)

𝑅𝑦(cos ‒ 1 𝑥)

-
4𝑥4 ‒ 4𝑥2 ‒ 1

𝑅𝑥(𝑥) 𝑅𝑦(𝜃) cos (2𝜃 ‒ 2𝑥)
2

+
𝑐𝑜𝑠(2𝜃 + 2𝑥)

2

𝑅𝑥(𝑥) 𝑅𝑦(𝜃2)𝑅𝑦(𝜃1)
‒

cos (2𝜃2 ‒ 2𝑥)
2

+
cos (2𝜃2 + 2𝑥)

2

+
cos ( ‒ 2𝜃1 + 2𝜃1 + 2𝑥)

4
+

𝑐𝑜𝑠(2𝜃1 ‒ 2𝜃1 + 2𝑥)

4
+

𝑐𝑜𝑠(2𝜃1 + 2𝜃1 ‒ 2𝑥)

4
+

𝑐𝑜𝑠(2𝜃1 + 2𝜃1 + 2𝑥)

4

𝑅𝑦(𝑥2)𝑅𝑥(𝑥2)

∙ 𝑅𝑦(𝑥1)𝑅𝑥(𝑥1)

- cos (4𝑥1)
4

+
cos (4𝑥2)

4
‒

cos (2𝑥1 ‒ 4𝑥2)
4

+
cos (2𝑥1 + 4𝑥2)

4
+

cos (4𝑥1 ‒ 4𝑥2)
8

‒
cos (4𝑥1 ‒ 2𝑥2)

4
+

cos (4𝑥1 + 2𝑥2)
4

+
cos (4𝑥1 + 4𝑥2)

8

+
1
4

𝑅𝑥(𝑥1)⨂𝑅𝑥(𝑥2) 𝐶𝑁𝑂𝑇(2,1)
cos (2𝑥1 ‒ 2𝑥2)

2
+

cos (2𝑥1 + 2𝑥2)
2
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𝑅𝑥(𝑥1)⨂𝑅𝑥(𝑥2) (𝑅𝑦(𝜃)⨂𝐼2) ∙ 𝐶𝑁𝑂𝑇(2,1)
cos ( ‒ 2𝜃 + 2𝑥1 + 2𝑥2)

4
+

cos (2𝜃 ‒ 2𝑥1 + 2𝑥2)
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+
cos (2𝜃 + 2𝑥1 ‒ 2𝑥2)

4
+

cos (2𝜃 + 2𝑥1 + 2𝑥2)
4

( ) 𝑅𝑦(𝑥1)𝑅𝑥(𝑥1)
(⨂ 𝑅𝑦(𝑥2)𝑅𝑥(𝑥2)

)

𝐶𝑁𝑂𝑇(2,1)
(2sin2 (𝑥1) ‒ 1)2(2sin2 (𝑥2) ‒ 1)2

( ) 𝑅𝑦(𝑥1)𝑅𝑥(𝑥1)
(⨂ 𝑅𝑦(𝑥2)𝑅𝑥(𝑥2)

)
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cos (2𝜃)
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4

+
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4

( ) 𝑅𝑦(𝑥1)𝑅𝑥(𝑥1)
(⨂ 𝑅𝑦(𝑥2)𝑅𝑥(𝑥2)

)

𝐶𝑁𝑂𝑇(2,1) ∙ (𝑅𝑦(𝜃1)⨂𝑅𝑦(𝜃2)) ∙ 𝐶𝑁𝑂𝑇(2,1)Eq S1

( ) 𝑅𝑦(𝑥1)𝑅𝑥(𝑥1)
(⨂ 𝑅𝑦(𝑥2)𝑅𝑥(𝑥2)

)

∙ (𝑅𝑥(𝜃3)⨂𝐼2) ∙ (𝑅𝑦(𝜃2)⨂𝐼2) ∙ (𝑅𝑥(𝜃1)⨂𝐼2) ∙ 𝐶𝑁𝑂𝑇(2,1)Eq S2

 𝑅𝑥(𝑥1)
⨂𝑅𝑥(𝑥2)⨂𝑅𝑥(𝑥3)

(𝑅𝑦(𝜃)⨂𝐼2⨂𝐼2)

∙ 𝐶𝑁𝑂𝑇(3,1)

∙ 𝐶𝑁𝑂𝑇(2,3)

∙ 𝐶𝑁𝑂𝑇(1,2)

Eq S3
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( ) 𝑅𝑦(𝑥1)𝑅𝑥(𝑥1)
(⨂ 𝑅𝑦(𝑥2)𝑅𝑥(𝑥2)

)

(⨂ 𝑅𝑦(𝑥3)𝑅𝑥(𝑥3)
)

(𝑅𝑦(𝜃)⨂𝐼2⨂𝐼2)

∙ 𝐶𝑁𝑂𝑇(3,1)

∙ 𝐶𝑁𝑂𝑇(2,3)

∙ 𝐶𝑁𝑂𝑇(1,2)

Eq S4
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c)

Figure S 1  Regression results with different quantum circuits, fitting a)  and b) . Successful results are marked red. 𝑦 = 𝑠𝑖𝑛(𝑥) 𝑦 = 𝑥
Regressions were repeated three times with Ising-type circuits (IsXYm) because the results changed randomly. c) Explanation of circuit 
configuration. 

NOTE: The best circuit configuration (2-XY-XY ) was selected for the following reasons. One qubit circuit could not fit the one-𝑚

dimensional functions (e.g., 1-XY-XY3). For initial encoding, only the use of  gates was sufficient to fit the linear function (e.g., 2-𝑅𝑦

Y-XY2 and 2-Y-XY3). However, additional  gates were needed for a non-linear  function (e.g., 2-XY-XY2 and 2-XY-XY3). 𝑅𝑥 𝑠𝑖𝑛(𝑥)

Preprocessing of explanatory variables with  and  was not successful with the linear function (e.g., 2-XY(a)-XY3). The cos ‒ 1 𝑥𝑖 sin ‒ 1 𝑥𝑖

use of Ising Hamiltonian instead of CNOT circuits led to more unstable regressions due to the randomness (e.g., 2-XY-IsXY3).
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Figure S 2 Full regression results for Figure 4a.
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Figure S 3 Additional regression results for Figure S 2 using conventional machine learning 
models with various hyperparameters. Details of the models are explained in Table S2. The 
polynomial regression by BYR (degree > 1) could basically fit the three functions. However, the 
regression was unstable; it could easily induce overfitting and substantial prediction errors, as 
observed in Figure S 4 and Table S3.
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Table S2 Explanations of the conventional models.a)

Expression Model name Hyperparameter

SVR(RBF) SVR kernel = “rbf”, gamma = “auto”

SVR(RBF) g=0.1 SVR kernel = “rbf”, gamma = 0.1

SVR(RBF) g=1 SVR kernel = “rbf” , gamma = 1

SVR(RBF) g=10 SVR kernel = “rbf” , gamma = 10

SVR(RBF) g=100 SVR kernel = “rbf” , gamma = 100

RFR RandomForestRegressor (default)

RFR depth=3 RandomForestRegressor max_depth=3

RFR depth=5 RandomForestRegressor max_depth=5

RFR depth=10 RandomForestRegressor max_depth=10

BYR degree=1 BayesianRidge (default)

BYR degree=2 BayesianRidge (default) Convert  to 𝑥 𝑥 + 𝑥2

BYR degree=3 BayesianRidge (default) Convert  to 𝑥 𝑥 + 𝑥2 + 𝑥3

BYR degree=4 BayesianRidge (default) Convert  to 𝑥 𝑥 + 𝑥2… + 𝑥4

GPR(RBF) GaussianProcessRegressor kernel=RBF + WhiteKernel

GPR(DOT) GaussianProcessRegressor kernel=DotProduct + WhiteKernel

GPR(RBF+Dot) GaussianProcessRegressor kernel=RBF+DotProduct + WhiteKernel

MLP-16(relu) l=1 Multi layer perceptronb) One hidden layer, ReLu activation

MLP-16(relu) l=2 Multi layer perceptronb) Two hidden layers, ReLu activation

MLP-16(relu) l=3 Multi layer perceptronb) Three hidden layers, ReLu activation

MLP-16(relu) l=4 Multi layer perceptronb) Four hidden layers, ReLu activation

MLP-16(tanh) l=1 Multi layer perceptronb) One hidden layer, tanh activation

MLP-16(tanh) l=2 Multi layer perceptronb) Two hidden layers, tanh activation

MLP-16(tanh) l=3 Multi layer perceptronb) Three hidden layers, tanh activation

MLP-16(tanh) l=4 Multi layer perceptronb) Four hidden layers, tanh activation

MLP-16(sigmoid) l=1 Multi layer perceptronb) One hidden layer, sigmoid activation

MLP-16(sigmoid) l=2 Multi layer perceptronb) Two hidden layers, sigmoid activation

MLP-16(sigmoid) l=3 Multi layer perceptronb) Three hidden layers, sigmoid activation

MLP-16(sigmoid) l=4 Multi layer perceptronb) Four hidden layers, sigmoid activation

a) Except for MLP, regressions models were made using a scikit-learn (version 1.0.2) library. 
Default hyperparameters were used unless noted otherwise. The document is available at 
https://scikit-learn.org/stable/whats_new/v1.0.html.
b) MLP was implemented by a Keras (version 2.9.0) library. The dimension of the hidden layers 
was 16.
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Figure S 4 Mean squared errors (MSEs) for the one-dimensional regression tasks. The random 
data preparation and regressions were repeated 30 times. a,b) Prediction errors for the testing 
datasets in the extrapolating regions and c,d) for interpolating regions. For clearer comparison, 
enlarged graphs are shown in Figures b and d) by setting the x-range of 0 to 0.5.
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Table S3 Average MSEs for the regression task in Figure S 4. Extra and inner represent the testing 
data in the extrapolating and interpolating regions, respectively. The “Total” column is the sum of 
Extra (all) and Inner (all), which are average MSEs for the regression tasks of linear, sin, and 
exponential curves.
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Figure S 5 a) Visualized state vector for an example circuit of  𝑈(𝜃)𝑉(𝑥) = 𝑅1,𝑦(𝜃)

 ( ). Coordinate  against four bases ∙ 𝐶𝑁𝑂𝑇1,2 ∙ 𝑅2,𝑥(𝑥 ) ∙ 𝑅1,𝑥(𝑥) 𝜃 = 1.0, 𝑥 = 0.6 𝑤𝑖

 are plotted as red points on complex planes. Changes of  by |00⟩ = (1,0,0,0)𝑇,…,|11⟩ = (0,0,0,1)𝑇 𝑤𝑖

gates are marked by blue squares. b) Model design of QCL and MLP. 
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Figure S 6 Visualization of latent variables for the QCL and MLP models. Gray plots and lines 
show answer data, black lines correspond to final predictions, and other colored curves are latent 
variables. The expression of “MLP-8(ReLu)” represents that an 8-dimensional hidden layer and a 
ReLu activation function were selected as hyperparameters. Related data is shown in Figure 5.
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Figure S 7 Extrapolating predictions of linear, exponential, and sinusoidal functions by QCL, GPR 
(RBF), and MLP-8. Random 100 points were generated according to the original functions. 
Extrapolating 10, 30, 50, 70, or 90% of the data were selected as testing sets, and the rest were 
training. The expression of, e.g., “sin2-0.9” indicates that a  function was fitted with the 90% sin 2𝑥
extrapolating testing data.
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Figure S 8 Statistical extrapolating performances for Figure S 7. The random dataset preparation 
and fitting were repeated 30 times. Transparent regions show standard errors with 68% confidence 
intervals.

S34



Figure S 9 Regression of  by normal QCL models with different prefactors for observable 𝑠𝑖𝑛(2𝑥)
 ( , ). The increase of the constant enabled the better fitting of  in �̂�↦𝑐�̂� 𝑐 = 4,6,8,10,12, 𝑜𝑟 16 𝑠𝑖𝑛(2𝑥)
the inner region. However, prediction errors in the extrapolating areas became much larger.
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Figure S 10 Regression of noised  or  by normal QCL, GPR, MLP-8 models. An 𝑠𝑖𝑛(𝑥) 𝑥
expression of sin-z-QCL means that Gaussian random noises were added to a sinusoidal curve 
with a scaling factor of z.
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Figure S 11 Training time of QCL model (configuration shown in Figure 3b). The number of qubits 
 and circuit depth  were changed to train random 50 records of . Predictions were 𝑛 𝑚 𝑦 = 𝑠𝑖𝑛(𝑥)

done by calculating from state vectors and repeated five times for each condition. Error bars 
indicate 95% confidence intervals assuming Gaussian distribution.
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Figure S 12 Predicting the function of  by an actual quantum computer (IBM Quantum) 𝑦 = sin (𝑥)
with . Models were trained using the output of state vectors. Then, simulated or actual 𝑚 = 2, 3, 𝑜𝑟 4
quantum computations were conducted to predict the same data from sampling results (Eq 7). For 
one record, sampling was done 1000 times. The accuracy of simulated sampling was worse than 
the state vector due to the randomness. Worse results of quantum sampling than simulation meant 
that noises during quantum computing affected the predictions.
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Figure S 13 Dataset preparation and regression steps for the molecular property prediction task. 
The dataset size of n was set to be 8, 16, 32, 64, 128, 256, or 512.
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Dataset size
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b)
Figure S 14 Regression results for the extrapolating tasks, with lipophilicity (Lipo), hydration free energy of small molecules in water 
(Solv), log solubility in water (ESOL), and melting point (MP) datasets. a) Box plots. b) Line plots with standard errors with 68% 
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confidence intervals. In the legends, “8-dim” means that the explanatory variables were compressed from about 200- to 8-dimensional 
by principal component analysis. 
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Dataset size

a)
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b)
Figure S 15 Regression results for the interpolating tasks as Box plots. b) Line plots with standard errors with 68% confidence intervals. 
 In the figures, 20% of testing data were randomly sampled from the dataset, whereas the top 20% records of  were extracted in Figure 𝑦
S 14.
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Dataset size

a)
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b)

Figure S 16 Regression results for the interpolating tasks with 4-dimensional vectors. a) Box plots and b) Line plots with standard 
errors with 68% confidence intervals.. A QCL circuit ( ) inputted a vector of .𝑛 = 8 (𝑥1,𝑥1,𝑥2,𝑥2,…,𝑥4,𝑥4)
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Table S4 List of molecular descriptors calculated by RDKit.
Name

MaxEStateIndex PEOE_VSA2 VSA_EState9 fr_aryl_methyl

MinEStateIndex PEOE_VSA3 FractionCSP3 fr_azide

MaxAbsEStateIndex PEOE_VSA4 HeavyAtomCount fr_azo

MinAbsEStateIndex PEOE_VSA5 NHOHCount fr_barbitur

qed PEOE_VSA6 NOCount fr_benzene

MolWt PEOE_VSA7 NumAliphaticCarbocycles fr_benzodiazepine

HeavyAtomMolWt PEOE_VSA8 NumAliphaticHeterocycles fr_bicyclic

ExactMolWt PEOE_VSA9 NumAliphaticRings fr_diazo

NumValenceElectrons SMR_VSA1 NumAromaticCarbocycles fr_dihydropyridine

NumRadicalElectrons SMR_VSA10 NumAromaticHeterocycles fr_epoxide

MaxPartialCharge SMR_VSA2 NumAromaticRings fr_ester

MinPartialCharge SMR_VSA3 NumHAcceptors fr_ether

MaxAbsPartialCharge SMR_VSA4 NumHDonors fr_furan

MinAbsPartialCharge SMR_VSA5 NumHeteroatoms fr_guanido

FpDensityMorgan1 SMR_VSA6 NumRotatableBonds fr_halogen

FpDensityMorgan2 SMR_VSA7 NumSaturatedCarbocycles fr_hdrzine

FpDensityMorgan3 SMR_VSA8 NumSaturatedHeterocycles fr_hdrzone

BCUT2D_MWHI SMR_VSA9 NumSaturatedRings fr_imidazole

BCUT2D_MWLOW SlogP_VSA1 RingCount fr_imide

BCUT2D_CHGHI SlogP_VSA10 MolLogP fr_isocyan

BCUT2D_CHGLO SlogP_VSA11 MolMR fr_isothiocyan

BCUT2D_LOGPHI SlogP_VSA12 fr_Al_COO fr_ketone
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BCUT2D_LOGPLOW SlogP_VSA2 fr_Al_OH fr_ketone_Topliss

BCUT2D_MRHI SlogP_VSA3 fr_Al_OH_noTert fr_lactam

BCUT2D_MRLOW SlogP_VSA4 fr_ArN fr_lactone

BalabanJ SlogP_VSA5 fr_Ar_COO fr_methoxy

BertzCT SlogP_VSA6 fr_Ar_N fr_morpholine

Chi0 SlogP_VSA7 fr_Ar_NH fr_nitrile

Chi0n SlogP_VSA8 fr_Ar_OH fr_nitro

Chi0v SlogP_VSA9 fr_COO fr_nitro_arom

Chi1 TPSA fr_COO2 fr_nitro_arom_nonortho

Chi1n EState_VSA1 fr_C_O fr_nitroso

Chi1v EState_VSA10 fr_C_O_noCOO fr_oxazole

Chi2n EState_VSA11 fr_C_S fr_oxime

Chi2v EState_VSA2 fr_HOCCN fr_para_hydroxylation

Chi3n EState_VSA3 fr_Imine fr_phenol

Chi3v EState_VSA4 fr_NH0 fr_phenol_noOrthoHbond

Chi4n EState_VSA5 fr_NH1 fr_phos_acid

Chi4v EState_VSA6 fr_NH2 fr_phos_ester

HallKierAlpha EState_VSA7 fr_N_O fr_piperdine

Ipc EState_VSA8 fr_Ndealkylation1 fr_piperzine

Kappa1 EState_VSA9 fr_Ndealkylation2 fr_priamide

Kappa2 VSA_EState1 fr_Nhpyrrole fr_prisulfonamd

Kappa3 VSA_EState10 fr_SH fr_pyridine

LabuteASA VSA_EState2 fr_aldehyde fr_quatN

PEOE_VSA1 VSA_EState3 fr_alkyl_carbamate fr_sulfide
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PEOE_VSA10 VSA_EState4 fr_alkyl_halide fr_sulfonamd

PEOE_VSA11 VSA_EState5 fr_allylic_oxid fr_sulfone

PEOE_VSA12 VSA_EState6 fr_amide fr_term_acetylene

PEOE_VSA13 VSA_EState7 fr_amidine fr_tetrazole

PEOE_VSA14 VSA_EState8 fr_aniline fr_thiazole

fr_thiocyan

fr_thiophene

fr_unbrch_alkane

fr_urea
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