## **Supporting Information**

## A Fully Automated Platform for Photoinitiated RAFT Polymerization

Jules Lee, <sup>a</sup> Prajakatta Mulay, <sup>a</sup> Matthew J. Tamasi, <sup>a</sup> Jonathan Yeow, <sup>b</sup> Molly M. Stevens, <sup>b, c</sup> Adam

J. Gormley<sup>\*, a</sup>

<sup>a</sup> Department of Biomedical Engineering, Rutgers, The State University of New Jersey,

Piscataway, NJ 08854, USA

<sup>b</sup> Department of Materials, Department of Bioengineering, and Institute of Biomedical

Engineering, Imperial College London, London, SW7 2AZ, U.K.

<sup>c</sup> Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77

Stockholm, Sweden

\*Correspondence to:

Adam J. Gormley: <u>adam.gormley@rutgers.edu</u>



**Figure S1.** Circuit schematic of lightbox with multiplexed LEDs consisting of an Arduino, three shift registers, a current source drive, voltage regulator module, and 96 LEDs in a dot-matrix configuration.



**Figure S2.** Workflow for automated fluorescence tracking and LED lighting. After a fluorescence read is done by the UV-Vis, the ratios are converted into a binary data matrix, where wells are represented by a binary number. The sum of all numbers in a specific row is sent to the Arduino, where each element in the array represents the sum of its respective row. The Arduino can then drive the shift registers to control which wells are lit.

|    | Polymer | Degree of      | Volume | СТА | Mon 1 | %        | Mon 2 | %             | Mon 3 | %    | Mon 4 | %    |
|----|---------|----------------|--------|-----|-------|----------|-------|---------------|-------|------|-------|------|
|    | ID      | Polymerization |        |     |       | Mon<br>1 |       | Mon           |       | Mon3 |       | Mon4 |
| 0  | 1       | 400            | 200    | 6   | HEA   | 100      |       | $\frac{2}{0}$ |       | 0    |       | 0    |
| 1  | 2       | 400            | 200    | 6   | NAM   | 100      |       | 0             |       | 0    |       | 0    |
| 2  | 3       | 400            | 200    | 6   | MEA   | 100      |       | 0             |       | 0    |       | 0    |
| 3  | 4       | 400            | 200    | 6   | DMA   | 100      |       | 0             |       | 0    |       | 0    |
| 4  | 5       | 400            | 200    | 6   | EA    | 100      |       | 0             |       | 0    |       | 0    |
| 5  | 6       | 400            | 200    | 6   | MA    | 100      |       | 0             |       | 0    |       | 0    |
| 6  | 7       | 400            | 200    | 6   | HEA   | 50       | NAM   | 50            |       | 0    |       | 0    |
| 7  | 8       | 400            | 200    | 6   | MEA   | 50       | MA    | 50            |       | 0    |       | 0    |
| 8  | 9       | 400            | 200    | 6   | DMA   | 50       | EA    | 50            |       | 0    |       | 0    |
| 9  | 10      | 400            | 200    | 6   | NAM   | 50       | DMA   | 50            |       | 0    |       | 0    |
| 10 | 11      | 400            | 200    | 6   | HEA   | 33       | MA    | 33            | NAM   | 33   |       | 0    |
| 11 | 12      | 400            | 200    | 6   | MEA   | 33       | EA    | 33            | DMA   | 33   |       | 0    |
| 12 | 13      | 400            | 200    | 6   | EA    | 33       | HEA   | 33            | MA    | 33   |       | 0    |
| 13 | 14      | 400            | 200    | 6   | NAM   | 33       | DMA   | 33            | NIPAM | 33   |       | 0    |
| 14 | 15      | 400            | 200    | 6   | NAM   | 25       | MA    | 25            | HEA   | 25   | MEA   | 25   |
| 15 | 16      | 400            | 200    | 6   | DMA   | 25       | HEA   | 25            | MEA   | 25   | EA    | 25   |
| 16 | 17      | 400            | 200    | 6   | MEA   | 25       | NAM   | 25            | EA    | 25   | DMA   | 25   |

**Table S1.** Synthesis template to be executed by the Hamilton liquid handling robot for homopolymers and heteropolymers.



**Figure S3.** SEC traces of DMA and MEA polymerized using the lamp-initiated PET-RAFT for 3 hours and 24 hours. Samples polymerized for 24 hours displayed significantly increased changes in molecular weight due to chain coupling compared to samples polymerized for only three hours.

| Polymer | Lightbox<br>R <sup>2</sup> | Lamp<br>R <sup>2</sup> |
|---------|----------------------------|------------------------|
| HEA     | 0.976                      | 0.990                  |
| DMA     | 0.979                      | 0.977                  |
| MEA     | 0.947                      | 0.997                  |
| EA      | 0.975                      | 0.977                  |
| MA      | 0.899                      | 0.832                  |
| NAM     | 0.951                      | 0.995                  |

**Table S2.** Correlation coefficients for homopolymers synthesized using the lightbox without LED multiplexing and the lamp.



**Figure S4.** Final acrylate and acrylamide homopolymer conversions calculated through <sup>1</sup>H-NMR after polymerization using the lightbox. Homopolymers were initiated with either constant LED lighting for 2.5 hours (Lightbox No Multiplexing) or initiated with individual LED control based on fluorescence ratio slopes calculated using the automated platform (Lightbox With Multiplexing).

**Table S3.** Linear correlation coefficients of the correlation between the homopolymer fluorescence ratios and conversions calculated using <sup>1</sup>H-NMR spectroscopy. Homopolymers were synthesized on the automated platform with multiplexed LED lighting to control each PET-RAFT reaction.

| Polymer | R <sup>2</sup> |
|---------|----------------|
| HEA     | 0.983          |
| DMA     | 0.968          |
| MEA     | 0.953          |
| EA      | 0.979          |
| MA      | 0.991          |
| NAM     | 0.890          |



**Figure S5.** Correlation between fluorescence ratio and conversion of pNAM polymerized for 30 minutes using 5-minute timepoints (red squares) and for 2.5 hours using 30-minute timepoints (blue circles) including their respective linear fit curves. Both polymer reactions were performed on our automated platform using the lightbox.



**Figure S6.** Plots of fluorescence ratio vs. time and conversion vs. time of pNAM polymerized for 2.5 hours using 15-minute timepoints with LED multiplexing.



**Figure S7.** SEC traces of (A) DMA (B) EA (C) HEA (D) MA (E) MEA and (F) NAM polymerized on the lamp (black), the lightbox without LED multiplexing (red), and the lightbox with LED multiplexing (blue).

**Table S4.** SEC results of all homopolymers of HEA, DMA, MEA, EA, MA, and NAM synthesized on the lightbox and lamp

| Polymer | Mn <sub>Theor</sub><br>(g/mol) | Lightbox<br>(No MP)          | Lightbox<br>(MP)             | Lamp<br>Mn <sub>GPC</sub> | Lightbox<br>(No MP) | Lightbox<br>(MP) <i>Đ</i> | Lamp<br>Đ |
|---------|--------------------------------|------------------------------|------------------------------|---------------------------|---------------------|---------------------------|-----------|
|         |                                | Mn <sub>GPC</sub><br>(g/mol) | Mn <sub>GPC</sub><br>(g/mol) | (g/mol)                   | Ð                   |                           |           |
| HEA     | 23,200                         | 32,942                       | 35,473                       | 33,386                    | 1.08                | 1.06                      | 1.10      |
| DMA     | 19,800                         | 21,373                       | 18,741                       | 19,876                    | 1.10                | 1.19                      | 1.19      |
| MEA     | 26,000                         | 34,078                       | 36,213                       | 21,363                    | 1.12                | 1.11                      | 1.06      |
| EA      | 20,000                         | 22,388                       | 22,003                       | 13,404                    | 1.28                | 1.25                      | 1.06      |
| MA      | 17,200                         | 21,212                       | 17,632                       | 12,311                    | 1.25                | 1.26                      | 1.16      |
| NAM     | 28,200                         | 29,595                       | 28,939                       | 20,482                    | 1.05                | 1.09                      | 1.06      |

**Table S5.** List of homopolymers and heteropolymers synthesized using our fully automated platform listing monomers used in each composition (**Polymer**), polymer ID (**Polymer ID**), polymer composition (Composition), theoretical molecular weight ( $Mn_{Theor}$ ), observed molecular weight ( $Mn_{SEC}$ ), dispersity ( $\mathcal{P}$ ), and monomer conversion ( $\alpha$ ) calculated using <sup>1</sup>H-NMR spectroscopy

| Polymer | Polymer | Composition (Monomer     | Mn <sub>Theor</sub> | <i>M</i> n <sub>SEC</sub> | Đ    | α(%) |
|---------|---------|--------------------------|---------------------|---------------------------|------|------|
|         | ÍD      | Ratio)                   | (g/mol)             | (g/mol)                   |      |      |
| HEA     | HP1     | Homopolymer              | 46,400              | 37,000                    | 1.09 | 88   |
| NAM     | HP2     | Homopolymer              | 56,400              | 54,779                    | 1.15 | 94   |
| MEA     | HP3     | Homopolymer              | 52,000              | 52,042                    | 1.26 | 81   |
| DMA     | HP4     | Homopolymer              | 39,600              | 51,908                    | 1.16 | 75   |
| EA      | HP5     | Homopolymer              | 40,000              | 55,830                    | 1.18 | 76   |
| MA      | HP6     | Homopolymer              | 34,400              | 28,787                    | 1.13 | 80   |
| HEA-    | CP1     | Heteropolymer (50:50)    | 51,400              | 61,225                    | 1.29 | 83   |
| NAM     |         |                          |                     |                           |      |      |
| MEA-MA  | CP2     | Heteropolymer (50:50)    | 43,200              | 42,698                    | 1.12 | 84   |
| DMA-EA  | CP3     | Heteropolymer (50:50)    | 39,800              | 37,854                    | 1.16 | 75   |
| DMA-    | CP4     | Heteropolymer (50:50)    | 48,000              | 61,239                    | 1.17 | 98   |
| NAM     |         |                          |                     |                           |      |      |
| HEA-MA- | CP5     | Heteropolymer (33:33:33) | 45,722              | 53,095                    | 1.17 | 85   |
| NAM     |         |                          |                     |                           |      |      |
| MEA-EA- | CP6     | Heteropolymer (33:33:33) | 43,856              | 42,526                    | 1.23 | 79   |
| DMA     |         |                          |                     |                           |      |      |
| EA-HEA- | CP7     | Heteropolymer (33:33:33) | 40,256              | 51,908                    | 1.16 | 90   |
| MA      |         |                          |                     |                           |      |      |
| NAM-    | CP8     | Heteropolymer (33:33:33) | 46,949              | 59,349                    | 1.16 | 91   |
| DMA-    |         |                          |                     |                           |      |      |
| NIPAM   |         |                          |                     |                           |      |      |
| NAM-    | CP9     | Heteropolymer            | 47,300              | 55,830                    | 1.18 | 92   |
| MA-HEA- |         | (25:25:25:25)            |                     |                           |      |      |
| MEA     |         |                          |                     |                           |      |      |
| DMA-    | CP10    | Heteropolymer            | 44,500              | 48,362                    | 1.19 | 87   |
| HEA-    |         | (25:25:25:25)            |                     |                           |      |      |
| MEA-EA  |         |                          |                     |                           |      |      |
| MEA-    | CP11    | Heteropolymer            | 47,000              | 39,976                    | 1.16 | 88   |
| NAM-EA- |         | (25:25:25:25)            |                     |                           |      |      |
| DMA     |         |                          |                     |                           |      |      |