
Towards more reproducible and FAIRer research data:
documenting provenance during data acquisition using the Infofile format

—Supporting Information—

Bernd Paulus1 and Till Biskup1, 2, ∗

1Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
2Present address: Bundesinstitut für Risikobewertung, Max-Dohrn-Straße 8–10, 10589 Berlin, Germany

I. SPECIFICATION OF THE INFOFILE FORMAT

The Infofile format was originally developed to support
the different MATLAB® toolboxes written by the authors
to process and analyse trepr [1], cwepr [2], and TA [3] data,
and this explains some of the restrictions of the format.
The current reference implementation for a parser for the
Infofile format is part of the ASpecD framework [4, 5],
support for special formats (and mappings) is contained
in derived packages, namely the trepr [6] and cwepr [7, 8]
Python packages.

A. Format

The basic file format has historically been ASCII (7-bit).
The restriction to the 7-bit ASCII character table ensures
compatibility beyond operating system limits. This is
only relevant due to MATLAB® not being able to cope
with UTF-8 until recently. For the current reference im-
plementation of the Infofile parser as part of the ASpecD
framework [4, 5], this restriction does not apply any more,
and any Infofile can make use of the full UTF-8 character
set.

B. File name and extension

The file extension is ‘.info’. The file name is identical to
the basic name of the associated data files. Note: Having
identical file basenames is the ideal case, but not always
possible to implement in practice. Therefore, this is not
a hard rule, but a recommendation, albeit a strong one.

C. Format identifier

The first line of the file is reserved for an identifier. This
enables the unique recognition of the file format during
parsing. The identifier is separated from the rest of the
file by a blank line and should contain a version number.

∗ E-mail: research@till-biskup.de

D. Blocks

The info file is divided into blocks. Blocks are intro-
duced by the block name in capital letters. Each block is
separated from the previous content of the file by a blank
line. Within the blocks are key-value pairs consisting of
a field identifier followed by a corresponding value. All
block names should be in English for internationalisation.

E. Field identifiers (keys)

Field identifiers (keys) may contain spaces, but no
special characters and no colon. The only exception at
the moment are round brackets. If further exceptions are
added, this could also be implemented. The reason for the
restriction is that the field identifiers are/were originally
used as field names internally in MATLAB® structures
(struct) and hence need to conform to the naming scheme
of variables. Field identifiers must start with a letter
(no number!). Each field identifier is terminated by a
colon. The block name should not be repeated in the
field identifier. Example: ‘Preparation’ instead of ‘Sample
preparation’ in the block ‘SAMPLE’. This ensures shorter
field names and at the same time greater clarity. All
identifiers (keys) within the file should be in English for
internationalisation.

F. Values

Values are always placed after a field identifier (key).
Within a block, the values should all be indented so that
they are flush with each other, i.e. the longest field
identifier defines the indentation of the values. Values
may contain special characters and colons. Depending on
the environment, however, the use of special characters
is not advisable, as they often fall victim to the different
character set encoding. Note, however, that nowadays
most operating systems support and use UTF-8 encoding.
Hence, this should not be a problem any more, if not too
old software and hardware is used. Values may extend
over several lines. In this case, each new line must begin
with a ‘whitespace character’ (space, tabulator, ...).

Electronic Supplementary Material (ESI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2022

mailto:research@till-biskup.de


2

G. Use of colons

Colons are only used to separate field identifiers and
values. In all other places (after an additional identifier,
after a block heading) colons are forbidden. The only
exception (see above) are field values. Colons are used
internally during parsing to separate the corresponding
field identifiers and values from each other.

H. Optional blocks and fields

Blocks and fields can be optional as long as the values
of certain (obligatory?) fields (‘switches’) can be used
to infer the (non-)existence of these fields and/or blocks.
If there are no values for a field, but still good reasons
not to remove the field, ‘N/A’ is set as the value. The
latter may be the case for fields where, depending on the
experiment, a relevant value should definitely be entered
and only under special circumstances there is no value
available. In such cases, it is strongly recommended to
keep the field in all files, as otherwise it will be quickly
forgotten.

I. Comments

Comments are always introduced with the percent sign
(%). If a percent sign is to be used as such, it is protected
(‘escaped’) by the preceding backslash (\), according to
the standard UNIX behaviour [9, p. 42]. Comments are
possible both within a line and on their own. Comment
blocks are also possible directly before blocks. In this
case, the blank line must be moved to above the comment
block in order to still clearly identify the block.

II. EXAMPLES

All examples shown as listings are available via GitHub
as well [10], together with information on how to con-
tribute to their further development. Due to the per-
missive license, everybody is welcome to use and further
develop the Infofile format for own purposes. Develop-
ment of the templates for specific methods will always be
closely connected to the respective data model, e.g. in
context of the trepr [6] and cwepr [7, 8] Python packages.

A. Time-resolved EPR spectroscopy

Listing 1. Example of an info file for time-resolved EPR
spectroscopy. Usually, these setups are laboratory-build and
consist of many different and exchangeable parts. Hence,
proper documentation of each individual component is crucial.

trEPR Info file - v. 0.1.6 (2016 -01 -18)

GENERAL

Filename: sample42

Date start: 2014 -12 -01

Date end: 2014 -12 -01

Time start: 10:00:00

Time end: 10:15:00

Operator: John Doe

Label: #42 @ 120 K

Purpose: First overview

SAMPLE

Name: something

ID: 42

Description: frozen solution

Solvent: oDCB

Preparation: 1 mM , degassed

Tube: 3.8 x 3 x 180 mm

EXPERIMENT

Runs: 1

Shot Repetition Rate: 1 Hz

SPECTROMETER

Model: ESP380E

Software: Transient , Vers. 0.6

MAGNETIC FIELD

Field probe type: Hall

Field probe model: xxx

Start: 290 mT

Stop: 390 mT

Step: 0.4 mT

Sequence: inward

Controller: Bruker 032 T

Power supply: Bruker 083 C

BACKGROUND

Field: 300.0 mT

Occurrence: 10

Polarisation: absorptive

Intensity: 8.8 mV

BRIDGE

Model: Bruker ER 046 MRT

Controller: Bruker MBC

Attenuation: 20 dB

Power: 2.01 mW

Detection: mixer

Frequency counter: HP 5352B

MW frequency: 9.6657 GHz

VIDEO AMPLIFIER

Bandwidth: 25 MHz

Amplification: 42 dB

RECORDER

Model: LeCroy 9354A

Averages: 1000

Time base: 2 ns

Bandwidth: 500 MHz



3

Pretrigger: 1.001 us

Coupling: DC

Impedance: 50 Ohm

Sensitivity: 20 mV

TRANSIENT

Points: 5000

Length: 10 us

Trigger Position: 500

PROBEHEAD

Type: dielectric

Model: Bruker ER 4118X-MD5

Coupling: critical

PUMP

Type: Laser

Model: GCR 190-10

Wavelength: 460 nm

Power: 1 mJ

Repetition rate: 10 Hz

Tunable type: OPO

Tunable model: OPTA BBO VIS/IR

Tunable dye: N/A

Tunable position: 11450

Filter: ND T=0.25

TEMPERATURE

Temperature: 120 K

Controller: Oxford ITC 503

Cryostat: Oxford ESR935

Cryogen: LN2

FIELD CALIBRATION

Filename: N/A

Field probe type: Gaussmeter

Field probe model: xxx

Standard: LiLiF

Signal field: xx G

MW Frequency: xx GHz

COMMENT

Deviation GM-HP of about 1.1 G.

After 480 transients , coupling and field

had been drifted. Readjustment at 3499.2 G.

B. continuous-wave EPR spectroscopy

Listing 2. Example for an info file for continuous-wave EPR
spectroscopy. While these measurements are usually performed
on commercial spectrometers, still, most EPR spectrometers
except of the benchtop models consist of many different and
exchangeable parts. Hence, proper documentation of each
individual component is crucial.

cwEPR Info file - v. 0.1.3 (2016 -01 -18)

GENERAL

Filename: sample42

Date start: 2019 -02 -27

Date end: 2019 -02 -27

Time start: 07:22:00

Time end: 07:26:00

Operator: John Doe

Label: sample42 -m01

Purpose: orientation dependence

SAMPLE

Name: BTZ

ID: 42

Description: Lorem ipsum

Solvent: CHCl3

Preparation: 20 ul drop -cast

Tube: 3.8 x 3.0 x 250 mm

EXPERIMENT

Type: field -sweep

Runs: 1

Variable parameter: field

Increment: xx mT

SPECTROMETER

Model: Bruker Elexsys E580

Software: Xepr 2.6b.146

MAGNETIC FIELD

Field probe type: Hall

Field probe model: xxx

Start: 346.5 mT

Stop: 356.5 mT

Step: 10/1023 mT

Sequence: up

Controller: Bruker

Power supply: Bruker

BRIDGE

Model: Bruker Super -X FT-EPR

Controller: Bruker

Attenuation: 30 dB

Power: 150 uW

Detection: diode

Frequency counter: Bruker

MW frequency: 9.83894 GHz

Q value: N/A

SIGNAL CHANNEL

Model: Bruker EPR SPU

Modulation amplifier: Bruker

Accumulations: 4

Modulation frequency: 100 kHz

Modulation amplitude: 0.05 mT

Receiver gain: 60 dB

Conversion time: 60 ms

Time constant: N/A

Phase: 0 deg

PROBEHEAD

Type: HQ

Model: Bruker 4119HS-W1

Coupling: critical

TEMPERATURE

Temperature: 295 K

Controller: N/A

Cryostat: N/A

Cryogen: N/A

COMMENT

5 min irradiation with UV light



4

C. Transient absorption spectroscopy

Listing 3. Example for an info file for optical transient-
absorption spectroscopy. In this case, a commercial setup
has been used. Still. it is assembled from different exchange-
able parts that each need to be documented in sufficient detail.

TA Info file - v. 0.2d (2012 -03 -31)

GENERAL

Filename: sa21

Date: 2017 -01 _23

Time start: 14:30:00

Time end: 15:40:00

Operator: John Doe

Label: sa369 , oDCB , 10us

Spectrometer: LP920 -K

Software: L900 , Version 7.3.6

Runs: 1

ShotRepetitionRate: 0.2 Hz

Purpose: First try

SAMPLE

Name: Something

Description: Half the truth

Preparation: 0.1 mM in oDCB

Cuvette:

TRANSIENT

Points: 2000

Trigger position: 200

Length: 10 us

SPECTROGRAPH

Type: Czerny -Turner with

å Triple Grating Turret

Model: standard

Aperture front:

Aperture back:

DETECTION

Type: PMT

Model: standard

Power supply: standard

Impedance: 50 Ohm

Time constant:

RECORDER

Model: Tektronix TDS 3012C

Averages: 1

Sensitivity: 10 mVOhm

Bandwidth: 1.0

Time base: 5 ns

Coupling:

PUMP

Type: Laser

Model: Continuum Surelite 1

Wavelength: 454 nm

Power: 6.5 mJ

Repetition rate: 10 Hz

Tunable type: OPO

Tunable model: Continuum OPO Plus

PROBE

Type: Lamp

Model: standard

Wavelength start: 300 nm

Wavelength stop: 800 nm

Wavelength step: 4 nm

Wavelength sequence: up

Power:

Filter:

Background: lamp

TEMPERATURE

Temperature: RT

Controller: Lauda alpha RA8

Cryostat: N/A

Cryogen: H2O

COMMENT

Unfortunately , no usable signal

III. ADDITIONAL DISCUSSION

A. Precedence of parameter values

One direction to further develop the Infofile format
discussed in the outlook is to minimise the contents of the
Infofile that need to be entered manually by the operator.
This could be achieved by files containing only those pa-
rameters not collected automatically by the setup, and
adding all the other parameters afterwards automatically
by the software used to process and analyse the data. Be-
ware, however, that the ‘truth’ is not necessarily always
in the parameter values collected by the setup. From own
experience, there is spectrometer control software that
does not automatically save the recorded data after the
measurement finished, but only after explicit user inter-
action. However, the parameter values saved to the file
are those read from the hardware when actually asked to
save the data. Any changes to these parameters from the
values during data acquisition, be it drifts or accidential
setting different values by the user, e.g., as preparation
for the next measurement, will be saved to the file in this
case. The result: The parameter values stored in the data
file are not the correct ones. On the other hand, as the
Infofile contents are written entirely by hand, values need
not necessarily be correct as well, be it due to copy and
paste or typos. Eventually, only manual inspection will
help here—or changing the spectrometer control software.

B. Comparing the Infofile format
to JSON and YAML

It has been stated that the Infofile format is both, eas-
ier to write by humans and more robust. The latter is
mostly due to the relative simplicity of the Infofile format
and the rather forgiving handling of whitespace character.
While JSON relies on brackets, YAML does so on whites-
pace. For programmers or technically skilled people, using
YAML or even JSON is not much of a hurdle. However,
the intended users of the Infofile format are those people
in the lab that are less technically skilled. Therefore,
when designing the Infofile format, human writability has
been valued higher than simplicity of parsing.



5

For a direct comparison of the three file formats, the
same content of the most generic version of an Infofile
given in the main text is provided in the different formats
and shown in the Listings 4, 5, and 6. This does not imply
that either JSON or YAML are not useful file formats.
Both are incredibly useful and are supported by many
different programming languages out of the box or by
using robust and well-proven libraries, and for both, not
only parsers but validators are available, making checking
a given file for syntactical correctness pretty easy.

Listing 4. Most generic version of an Infofile without any
specific details for a method, presented in JSON format. Note
the obligatory use of brackets for the different ‘objects’. JSON
does not rely on whitespace and can be minimised, removing
any whitespace characters outside actual keys or values, for
saving bandwidth during transport.

{

"format ": {

"type": "common metadata",

"version ": "0.1.0"

},

"general ": {

"start": {

"date": "2020 -04 -04" ,

"time": "11:05:00"

},

"end": {

"date": "2020 -04 -04" ,

"time": "15:50:00"

},

"operator ": "John Doe",

"purpose ": "Kill time"

},

"sample ": {

"name": "Random sample 1",

"description ": "Nicked from bench

å neighbour"

},

"comment ": "To be or not to be\n"

}

Listing 5. Most generic version of an Infofile without any
specific details for a method, presented in YAML format. Note
that YAML relies on the consistent indentation, but therefore
does not require any brackets. This makes this format much
easier to write for humans than JSON (cf. Listing 4).

---

format:

type: common metadata

version: 0.1.0

general:

start:

date: 2020 -04 -04

time: 11:05:00

end:

date: 2020 -04 -04

time: 15:50:00

operator: John Doe

purpose: Kill time

sample:

name: Random sample 1

description: Nicked from bench neighbour

comment: >

To be or not to be...

Listing 6. Most generic version of an Infofile without any
specific details for a method, presented in the actual Infofile
format. As mentioned, the Infofile format is the least verbose
of the three, and in contrast to YAML, it is quite forgiving
regarding the handling of whitespace characters.

common Info file - v. 0.1.0

GENERAL

Date start: 2020 -04 -04

Time start: 11:05:00

Date end: 2020 -04 -04

Time end: 15:50:00

Operator: John Doe

Purpose: Kill time

SAMPLE

Name: Random sample 1

Description: Nicked from bench neighbour

COMMENT

To be or not to be...

[1] Biskup, T.; Paulus, B.; Meyer, D. trEPR toolbox. 2022;
doi:10.5281/zenodo.7395548.

[2] Biskup, T.; Meyer, D. cwEPR toolbox. 2022;
doi:10.5281/zenodo.7396037.

[3] Biskup, T. TA toolbox. 2022;
doi:10.5281/zenodo.7395925.

[4] Biskup, T. ASpecD framework. 2022; https://docs.

aspecd.de/, doi:10.5281/zenodo.4717937.
[5] Popp, J.; Biskup, T. ASpecD: A modular framework for

the analysis of spectroscopic data focussing on repro-
ducibility and good scientific practice. Chem. Methods
2022, 2, e202100097.

[6] Popp, J.; Schröder, M.; Biskup, T. trEPR
Python package. 2021; https://docs.trepr.de/,
doi:10.5281/zenodo.4897112.

[7] Schröder, M.; Biskup, T. cwepr Python package. 2021;
https://docs.cwepr.de/, doi:10.5281/zenodo.4896687.

[8] Schröder, M.; Biskup, T. cwepr - A Python package for
analysing cw-EPR data focussing on reproducibility and
simple usage. J. Magn. Reson. 2022, 335, 107140.

[9] Raymond, E. S. The Art of UNIX Programming ; Addison
Wesley: Boston, 2004.

[10] Paulus, B.; Biskup, T. Infofile. 2022; https://github.

com/tillbiskup/infofile, doi:10.5281/zenodo.7452780.

https://docs.aspecd.de/
https://docs.aspecd.de/
https://docs.trepr.de/
https://docs.cwepr.de/
https://github.com/tillbiskup/infofile
https://github.com/tillbiskup/infofile

	Towards more reproducible and FAIRer research data: documenting provenance during data acquisition using the Infofile format[1ex] —Supporting Information—
	Specification of the Infofile format
	Format
	File name and extension
	Format identifier
	Blocks
	Field identifiers (keys)
	Values
	Use of colons
	Optional blocks and fields
	Comments

	Examples
	Time-resolved EPR spectroscopy
	continuous-wave EPR spectroscopy
	Transient absorption spectroscopy

	Additional discussion
	Precedence of parameter values
	Comparing the Infofile format to JSON and YAML

	References


