Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Synergistic Luminescent Thermometer of Co-doped

Ca₂GdSbO₆:Mn⁴⁺/(Eu³⁺ or Sm³⁺) Phosphors

Guixian Li^a, Yu Xue^a, Qinan Mao^a, Lang Pei^a, Hong He^a, Meijiao Liu^b, Liang Chu^{c,*}, Jiasong Zhong^{a,*}

^a Center of Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

^b Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China

° New Energy Technology Engineering Laboratory of Jiangsu Province, School of Science,

Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Corresponding authors: E-mail: chuliang@njupt.edu.cn (L. Chu), jiasongzhong@hdu.edu.cn (J.S. Zhong)

	Ca ₂ GdSbO ₆	$Ca_2GdSbO_6{:}Mn^{4+}\!/Eu^{3+}$	$Ca_2GdSbO_6:Mn^{4+}/Sm^{3+}$
Crystal system	monoclinic	monoclinic	monoclinic
Space group	P121/n1	P12 ₁ /n1	P12 ₁ /n1
Units Z	2	2	2
<i>a</i> (Å)	5.5720(8)	5.5860(3)	5.5859(6)
<i>b</i> (Å)	5.8530(9)	5.8485(3)	5.8487(2)
<i>c</i> (Å)	8.085(1)	8.0819(3)	8.0825(3)
$\alpha = \gamma$ (deg)	90	90	90
β (deg)	90.250(5)	90.284(2)	90.281(1)
$V(Å^3)$	263.7(1)	264.0(5)	264.0(7)
R_p (%)		6.36	6.22
R_{wp} (%)		8.28	8.12
χ^2		1.37	1.28

 $\label{eq:constraint} \begin{array}{l} \textbf{Table S1} \mbox{ Structural data for Ca_2GdSbO_6 and refined crystallographic parameters of the Ca_2GdSbO_6:} Mn^{4+}/Eu^{3+} \mbox{ and Ca_2GdSbO_6:} Mn^{4+}/Sm^{3+}. \end{array}$

Table S2 Fitting parameters of Equation (1) (LIR as a function of temperature) for the Mn ⁴⁺ /yEu ³
and Mn^{4+}/zSm^{3+} co-doped Ca ₂ GdSbO ₆ samples.

Samples	D	F	ΔE_2	R ²
1%Eu	30.7218 ± 0.6267	6012.9303 ± 1286.1863	0.2743 ± 0.0081	0.9991
5%Eu	11.2228 ± 0.1883	6609.6339 ± 1237.9488	0.2789 ± 0.0071	0.9993
10%Eu	9.1320 ± 1.5275	1034.8536 ± 296.7241	0.1860 ± 0.0155	0.9943
1%Sm	40.8203 ± 0.7125	$\begin{array}{r} 12767.7802 \pm \\ 3545.0571 \end{array}$	0.3093 ± 0.0103	0.9988
3%Sm	13.9917 ± 0.1017	$\frac{18989.1703 \pm}{2348.5704}$	0.3209 ± 0.0045	0.9998
5%Sm	20.8857 ± 0.2688	$\begin{array}{r} 11589.2459 \pm \\ 2457.8008 \end{array}$	0.3093 ± 0.0079	0.9993

Host	Ln ³⁺	S_r (%K ⁻¹)	Temperature range (K)	Reference
La ₂ LiSbO ₆	Eu ³⁺	0.89 (503K)	303-523	[1]
$CaGdMgSbO_6$	Sm^{3+}	1.38 (548K)	298-573	[2]
Ca ₂ LaNbO ₆	Eu ³⁺	1.51 (455K)	298-498	[3]
Ba ₂ LaNbO ₆	Eu ³⁺	2.08 (398K)	298-498	[3]
NaLaMgWO ₆	Eu ³⁺	0.86 (523K)	303-523	[4]
LuAG	Eu ³⁺	0.70 (303K)	303-358	[5]
$Sr_4Al_{14}O_{25}$	Tb^{3+}	2.80 (423K)	123-523	[6]
CaGdAlO ₄	Tb^{3+}	2.30 (398K)	230-470	[7]
$BaLaMgNbO_6$	Dy^{3+}	1.82 (457K)	298-523	[8]
YAlO ₃	Ho ³⁺	1.17 (450K)	293-563	[9]
YAlO ₃	Er ³⁺	1.95 (530K)	293-563	[9]
Ca_2GdSbO_6	Eu^{3+}	1.38 (420K)	303-523	This work
Ca_2GdSbO_6	Sm^{3+}	1.55 (430K)	303-523	This work

 Table S3 Thermometric performance of luminescent thermometers based on Mn⁴⁺-Ln³⁺ ions.

Table S4 The detailed integration interval of the emission peaks of Mn⁴⁺, Eu³⁺, Sm³⁺.

 8	1, , ,
Emission peak	Integration interval (nm)
$Mn^{4+}:^{2}E \rightarrow ^{4}A_{2}$	650 - 695
$Eu^{3+}:^{5}D_{0}\rightarrow ^{7}F_{2}$	605 - 630
 $Sm^{3+}:{}^4G_{5/2} {\longrightarrow} {}^6H_{7/2}$	580 - 620

*The emission spectrum is not deconvoluted.

Fig. S1 EDX spectrum of Ca₂GdSbO₆:Mn⁴⁺, Eu³⁺ samples.

Fig. S2 The room temperature PL spectra of (a) $Ca_2GdSbO_6:Mn^{4+}/yEu^{3+}$, and (b) $Ca_2GdSbO_6:Mn^{4+}/zSm^{3+}$ phosphors.

References

- 1 Y. Song, N. Guo, J. Li, R. Ouyang, Y. Miao and B. Shao, Photoluminescence and temperature sensing of lanthanide Eu³⁺ and transition metal Mn⁴⁺ dual-doped antimoniate phosphor through site-beneficial occupation, *Ceram. Int.*, 2020, **46**, 22164-22170.
- 2 J. Liao, M. Wang, L. Kong, J. Chen, X. Wang, H. Yan, J. Huang and C. Tu, Dual-mode optical temperature sensing behavior of double-perovskite cagdmgsbo6:Mn⁴⁺/Sm³⁺ phosphors, *J. Lumin.*, 2020, **226**, 117492.
- 3 P. Wang, J. Mao, L. Zhao, B. Jiang, C. Xie, Y. Lin, F. Chi, M. Yin and Y. Chen, Double perovskite A₂LaNbO₆:Mn⁴⁺,Eu³⁺ (A = Ba, Ca) phosphors: Potential applications in optical temperature sensing, *Dalton Trans.*, 2019, **48**, 10062-10069.
- H. Zhou, N. Guo, M. Zhu, J. Li, Y. Miao and B. Shao, Photoluminescence and ratiometric optical thermometry in Mn⁴⁺/Eu³⁺ dual-doped phosphor via site-favorable occupation, *J. Lumin.*, 2020, 224, 117311.
- 5 B. Yan, Y. Wei, W. Wang, M. Fu and G. Li, Red-tunable LuAG garnet phosphors via Eu³⁺→Mn⁴⁺ energy transfer for optical thermometry sensor application, *Inorg. Chem. Front.*, 2021, **8**, 746-757.
- 6 W. Piotrowski, K. Trejgis, K. Maciejewska, K. Ledwa, B. Fond and L. Marciniak, Thermochromic luminescent nanomaterials based on Mn⁴⁺/Tb³⁺ codoping for temperature imaging with digital cameras, ACS Appl. Mater. Interfaces, 2020, 12, 44039-44048.
- 7 Y. Fang, Y. Zhang, Y. Zhang and J. Hu, Achieving high thermal sensitivity from ratiometric CaGdAlO₄:Mn⁴⁺,Tb³⁺ thermometers. *Dalton Trans.* 2021, *50*, 13447-13458.
- 8 Y. Lin, L. Zhao, B. Jiang, J. Mao, F. Chi, P. Wang, C. Xie, X. Wei, Y. Chen and M. Yin, Temperature-dependent luminescence of BaLaMgNbO₆:Mn⁴⁺, Dy³⁺ phosphor for dual-mode optical thermometry. *Opt. Mater.* 2019, *95*, 109199.
- 9 D. Chen, W. Xu, S. Yuan, X. Li and J. Zhong, Ln³⁺-sensitized Mn⁴⁺ near-infrared upconverting luminescence and dual-modal temperature sensing. *J. Mater. Chem. C* 2017, *5*, 9619-9628.