Electronic Supplementary Information:

Na₂SrB₁₆O₂₆: A New Borate with Independent Interpenetrating B–O Networks and Deep-Ultraviolet Cutoff Edge

Zhikang Chen,^a Kewang Zhang,^a and Jun Zhang^{a,*}

^aSchool of Physics and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P. R China.

*Corresponding author, E-mail: zhj@xju.edu.cn

Contents

Table S1. Atomic coordinates (× 10⁴), equivalent isotropic displacement parameters (Å² × 10³) and bond valence sum (BVS) calculation for Na₂SrB₁₆O₂₆. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Table S2. Selected bond lengths (Å) and angles (°) for Na₂SrB₁₆O₂₆.

Figure S1. (a) The Na–O chains and isolated $[SrO_{10}]$ groups in Na₂SrB₁₆O₂₆; (b)The isolated $[KO_8]$ and

 $[BaO_8] \text{ groups in } K_2BaB_{16}O_{26}.$

Figure S2. IR spectrum.

Figure S3. TG-DSC curves.

Figure S4. Density of states (DOS).

			-		
Atom	Х	у	Z	$U_{ m eq}{}^{ m a}$	BVS ^b
Sr1	5000	5000	10000	26(1)	2.0
Na1	8831(1)	3960(3)	6829(2)	49(1)	0.9
B1	10607(2)	1845(3)	4544(3)	12(1)	3.0
B2	8913(2)	3935(4)	3908(3)	13(1)	3.0
B3	7325(2)	5890(4)	3833(3)	11(1)	3.0
B4	6185(2)	5943(4)	5600(3)	11(1)	3.0
В5	5011(2)	6450(4)	7216(3)	10(1)	3.0
B6	3610(2)	8902(3)	7533(3)	9(1)	3.1
B7	2080(2)	9794(4)	5509(3)	12(1)	3.0
B8	1837(2)	10518(4)	3147(3)	12(1)	3.0
01	11123(2)	848(3)	5598(2)	15(1)	1.9
02	10985(2)	1840(3)	3403(2)	17(1)	1.9
03	9689(2)	2879(2)	4752(2)	13(1)	2.0
O4	8893(2)	4143(3)	2627(2)	17(1)	2.0
05	8195(2)	4865(2)	4562(2)	14(1)	2.1
O6	7320(2)	6271(2)	2571(2)	14(1)	1.9
07	6670(2)	4530(2)	6234(2)	12(1)	2.0
08	6470(2)	6539(2)	4456(2)	14(1)	2.0
09	5296(2)	6887(2)	6018(2)	12(1)	2.1
O10	5584(2)	5105(2)	7916(2)	11(1)	2.3
011	4172(1)	7210(2)	7752(2)	11(1)	2.0
O12	2508(2)	8791(2)	6561(2)	14(1)	2.0
O13	2514(2)	9783(2)	4388(2)	16(1)	1.9

Table S1. Atomic coordinates (× 10⁴), equivalent isotropic displacement parameters $(Å^2 \times 10^3)$ and bond valence sum (BVS) calculation for Na₂SrB₁₆O₂₆. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

 ${}^{a}U_{eq}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

^bBVS are calculated by using the bond-valence model ($S_i = \exp[(R_o - R_i)/B]$, where R_o is an empirical constant, R_i is the length of bond (in angstroms), and B = 0.37.

Sr(1)-O(11)	2.8943(18)	B(2)-O(5)	1.379(3)
Sr(1)-O(11)#1	2.8942(18)	B(3)-O(5)	1.378(3)
Sr(1)-O(9)#2	2.6274(18)	B(3)-O(6)	1.342(3)
Sr(1)-O(9)#3	2.6274(18)	B(3)-O(8)	1.382(3)
Sr(1)-O(8)#3	3.2843(18)	B(4)-O(7)	1.339(3)
Sr(1)-O(8)#2	3.2843(18)	B(4)-O(8)	1.377(3)
Sr(1)-O(10)#1	2.3984(19)	B(4)-O(9)	1.401(3)
Sr(1)-O(10)	2.3984(19)	B(5)-O(9)	1.393(3)
Sr(1)-O(13)#2	2.8137(19)	B(5)-O(10)	1.361(3)
Sr(1)-O(13)#3	2.8137(19)	B(5)-O(11)	1.348(3)
Na(1)-O(7)	2.483(2)	B(6)-O(7)#2	1.467(3)
Na(1)-O(3)	2.688(2)	B(6)-O(10)#2	1.460(3)
Na(1)-O(5)	2.421(2)	B(6)-O(11)	1.460(3)
Na(1)-O(2)#4	2.750(2)	B(6)-O(12)	1.454(3)
Na(1)-O(12)#2	2.503(2)	B(7)-O(1)#7	1.392(3)
Na(1)-O(4)#4	2.538(3)	B(7)-O(12)	1.349(3)
Na(1)-O(4)#5	2.962(3)	B(7)-O(13)	1.360(4)
B(1)-O(1)	1.372(3)	B(8)-O(2)#7	1.481(3)
B(1)-O(2)	1.345(4)	B(8)-O(4)#6	1.487(3)
B(1)-O(3)	1.380(3)	B(8)-O(6)#6	1.465(3)
B(2)-O(3)	1.384(3)	B(8)-O(13)	1.476(3)
B(2)-O(4)	1.336(3)		
O(11)#1-Sr(1)-O(11)	180.00(5)	O(7)-Na(1)-O(4)#4	102.06(9)
O(11)#1-Sr(1)-O(8)#2	58.28(5)	O(7)-Na(1)-O(4)#5	139.94(10)
O(11)-Sr(1)-O(8)#2	121.72(5)	O(3)-Na(1)-O(2)#4	88.21(7)
O(11)#1-Sr(1)-O(8)#3	121.72(5)	O(3)-Na(1)-O(4)#5	81.25(6)
O(11)-Sr(1)-O(8)#3	58.28(5)	O(5)-Na(1)-O(7)	67.60(7)
O(9)#2-Sr(1)-O(11)	102.96(5)	O(5)-Na(1)-O(3)	52.94(6)

 Table S2. Selected bond lengths (Å) and angles (°) for $Na_2SrB_{16}O_{26}$.

O(9)#2-Sr(1)-O(11)#1	77.04(5)	O(5)-Na(1)-O(2)#4	134.32(8)
O(9)#3-Sr(1)-O(11)	77.04(5)	O(5)-Na(1)-O(12)#2	124.03(8)
O(9)#3-Sr(1)-O(11)#1	102.96(5)	O(5)-Na(1)-O(4)#5	96.91(8)
O(9)#3-Sr(1)-O(9)#2	180	O(5)-Na(1)-O(4)#4	125.05(11)
O(9)#3-Sr(1)-O(8)#3	44.86(5)	O(2)#4-Na(1)-O(4)#5	48.76(6)
O(9)#2-Sr(1)-O(8)#3	135.14(5)	O(12)#2-Na(1)-O(3)	154.25(11)
O(9)#3-Sr(1)-O(8)#2	135.14(5)	O(12)#2-Na(1)-O(2)#4	101.46(7)
O(9)#2-Sr(1)-O(8)#2	44.86(5)	O(12)#2-Na(1)-O(4)#4	73.27(7)
O(9)#2-Sr(1)-O(13)#2	94.46(5)	O(12)#2-Na(1)-O(4)#5	122.99(9)
O(9)#3-Sr(1)-O(13)#2	85.54(5)	O(4)#4-Na(1)-O(3)	88.68(9)
O(9)#3-Sr(1)-O(13)#3	94.46(5)	O(4)#4-Na(1)-O(2)#4	68.38(7)
O(9)#2-Sr(1)-O(13)#3	85.54(5)	O(4)#4-Na(1)-O(4)#5	116.35(6)
O(8)#3-Sr(1)-O(8)#2	180	O(1)-B(1)-O(3)	115.0(2)
O(10)-Sr(1)-O(11)#1	129.87(5)	O(2)-B(1)-O(3)	122.6(2)
O(10)#1-Sr(1)-	50 12(5)	O(2) D(1) O(1)	122.2(2)
O(11)#1	50.13(5)	O(2)-B(1)-O(1)	122.3(2)
O(10)-Sr(1)-O(11)	50.13(5)	O(5)-B(2)-O(3)	111.9(2)
O(10)#1-Sr(1)-O(11)	129.87(5)	O(4)-B(2)-O(3)	125.3(2)
O(10)-Sr(1)-O(9)#2	72.85(6)	O(4)-B(2)-O(5)	122.6(2)
O(10)#1-Sr(1)-O(9)#3	72.85(6)	O(6)-B(3)-O(8)	121.2(2)
O(10)#1-Sr(1)-O(9)#2	107.15(6)	O(6)-B(3)-O(5)	121.3(2)
O(10)-Sr(1)-O(9)#3	107.15(6)	O(5)-B(3)-O(8)	117.5(2)
O(10)-Sr(1)-O(8)#3	64.22(5)	O(7)-B(4)-O(9)	122.2(2)
O(10)#1-Sr(1)-O(8)#2	64.22(5)	O(7)-B(4)-O(8)	123.3(2)
O(10)-Sr(1)-O(8)#2	115.78(5)	O(8)-B(4)-O(9)	114.4(2)
O(10)#1-Sr(1)-O(8)#3	115.78(5)	O(11)-B(5)-O(9)	125.8(2)
O(10)#1-Sr(1)-O(10)	180	O(11)-B(5)-O(10)	115.2(2)
O(10)-Sr(1)-O(13)#2	75.06(6)	O(10)-B(5)-O(9)	119.0(2)
O(10)#1-Sr(1)-	75.06(6)	O(11)-B(6)-O(7)#8	109.5(2)

O(13)#3				
O(10)#1-Sr(1)-	104.04(6)	O(11) D(6) O(10) # 9	109.32(19)	
O(13)#2	104.94(0)	O(11)-B(0)-O(10)#8		
O(10)-Sr(1)-O(13)#3	104.94(6)	O(10)#8-B(6)-O(7)#8	109.7(2)	
O(13)#3-Sr(1)-O(11)	68.35(5)	O(12)-B(6)-O(11)	110.6(2)	
O(13)#2-Sr(1)-O(11)	111.65(5)	O(12)-B(6)-O(7)#8	107.8(2)	
O(13)#3-Sr(1)-	111 (5(5)	Q(12) D(() Q(10)//9	109.9(2)	
O(11)#1	111.65(5)	O(12)-B(6)-O(10)#8		
O(13)#2-Sr(1)-	(0, 25(5))	Q(12) D(7) Q(1)//10	116.5(2)	
O(11)#1	68.35(5)	O(12)-B(7)-O(1)#10		
O(13)#3-Sr(1)-O(8)#3	116.85(5)	O(12)-B(7)-O(13)	123.6(2)	
O(13)#2-Sr(1)-O(8)#3	63.15(5)	O(13)-B(7)-O(1)#10	119.9(2)	
O(13)#2-Sr(1)-O(8)#2	116.85(5)	O(6)#11-B(8)-O(2)#10	110.6(2)	
O(13)#3-Sr(1)-O(8)#2	63.15(5)	O(6)#11-B(8)-O(4)#11	111.8(2)	
O(13)#3-Sr(1)-	100.00(0)	0(0)//11 D(0) 0(12)	108.1(2)	
O(13)#2	180.00(8)	O(6)#11-B(8)-O(13)		
O(7)-Na(1)-O(3)	111.93(8)	O(2)#10-B(8)-O(4)#11	105.7(2)	
O(7)-Na(1)-O(2)#4	157.99(9)	O(13)-B(8)-O(2)#10	111.2(2)	
O(7)-Na(1)-O(12)#2	56.53(7)	O(13)-B(8)-O(4)#11	109.5(2)	

Symmetry transformations used to generate equivalent atoms:

#1 - x + 1, -y + 1, -z + 2	#2 - x + 1, y - 1/2, -z + 3/2	#3 x, $-y + 3/2$, $z + 1/2$
#4 x, $-y + 1/2$, $z + 1/2$	#5 - x + 2, -y + 1, -z + 1	#6 - x + 1, y - 1/2, -z + 1/2
#7 x + 1, y - 1, z	#8 - x + 1, y + 1/2, -z + 3/2	#9 x, $-y + 1/2$, $z - 1/2$
#10 x - 1, y + 1, z	#11 - x + 1, y + 1/2, -z + 1/2	

Figure S1. (a) The Na–O chains and isolated [SrO₁₀] groups in Na₂SrB₁₆O₂₆; (b)The isolated [KO₈] and [BaO₈] groups in K₂BaB₁₆O₂₆.

Figure S2. IR spectrum.

Figure S4. Density of states (DOS).