SUPPORTING INFORMATION FOR

Reactions of *N*-heterocyclic Carbene-Based Chalcogenoureas with Halogens: A Diverse Range of Outcomes

Marina Saab,^a David J. Nelson,^b Matthew Leech,^c Kevin Lam,^c Steven P. Nolan,^d Fady Nahra^{*a,e} and Kristof Van Hecke^{*a}

- ^{c.} School of Science, University of Greenwich, Chatham Maritime ME4 4TB, UK.
- ^{d.} Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium.
- e. VITO (Flemish Institute for Technological Research), Boeretang 200, 2400 Mol, Belgium. Eady.Nahra@Vito.be

Contents

Cyclic voltammograms of [S(NHC)] scanned in the negative cathodic direction	2
Experimental section	3
General Information	3
General procedure for the synthesis of NHC-based dibromo-chalcogenoureas	3
Dibromo-selenoureas	3
Dibromo-thioureas	4
General procedure for the synthesis of NHC-based dichloro-chalcogenoureas	5
Dichloro-selenoureas	5
General procedure for the synthesis of NHC-based diiodo-chalcogenoureas	6
Diiodo-selenoureas	6
Diiodo-thioureas	7
NMR spectra	9

^{a.} XStruct, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium. <u>Kristof.VanHecke@UGent.be</u>

^{b.} WestCHEM Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, Scotland.

Cyclic voltammograms of [S(NHC)] scanned in the negative cathodic direction

Figure S1. Cyclic voltammogram of [S(ICy)] scanned in the negative direction.

Figure S2. Cyclic voltammogram of [S(IPr*)] scanned in the negative direction.

Experimental section General Information

NMR spectra were acquired on a Bruker AV3-400 spectrometer equipped with a liquid nitrogen cryoprobe, a Bruker AV400 spectrometer with a BBFO-z-ATMA probe or a Bruker Avance II 500MHz equipped with a 5mm triple channel probe head (TXO type). ¹H NMR spectra were referenced to residual solvent signals and ¹³C{¹H} NMR spectra to the deuterated solvent signal, while chemical shifts are reported in ppm. ⁷⁷Se NMR spectra were referenced to external standards. [¹H, ¹H] COSY, [¹H, ¹³C] HSQC and [¹H, ¹³C] HMBC spectra were used to assign signals. X-ray intensity data were collected at 100 K, on a Rigaku Oxford Diffraction Supernova Dual Source (Cu at zero) diffractometer equipped with an Atlas CCD detector using ω scans and Cu K α (λ = 1.54184 Å) radiation. The images were interpreted and integrated with the program CrysAlisPro. Using Olex the structures were solved by direct methods using the ShelXS/T structure solution program and refined by full-matrix least-squares on F² using the ShelXL program package. Non-hydrogen atoms were anisotropically refined and the hydrogen atoms in the riding mode with isotropic temperature factors fixed at 1.2 times U(eq) of the parent atoms (1.5 times for methyl groups). Bromine, Sulfuryl chloride and iodine were obtained from commercial sources and used as supplied. Chalcogenourea NHCs are prepared according to a known procedure.¹ Reagent grade solvents were always used as received unless otherwise stated. Crystallographic data underpinning this study can be downloaded from the Cambridge Structural Database (CSD) via the following link: https://www.ccdc.cam.ac.uk/structures/ (CCDC 2121842-2121867). See below for more details.

General procedure for the synthesis of NHC-based dibromo-chalcogenoureas

100 mg of seleno- or thiourea NHCs were dissolved in 3 mL of dichloromethane. 1.2 equiv. of bromine was then added to the solution and the mixture was stirred in an ice bath for 2-3 h. The product was then washed with pentane and dried in the vacuum oven.

Dibromo-selenoureas

[SeBr₂(IPr)]: m = 132.8 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.59 (t, J = 8 Hz, 2H, Ar CH), 7.50 (s, 2H, N(CH)₂N), 7.40 (d, J = 7.8 Hz, 4H, Ar CH), 2.91 (sept, J = 6.6 Hz, 4H, CHMe₂), 1.47 (d, J = 6.5 Hz, 12H, CH₃), 1.13 (d, J = 6.8 Hz, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_{c} 146.1 (Ar C), 142.4 (C-Se), 132.4 (Ar C), 132.0 (Ar CH), 126.3 (N(CH)₂N), 124.9 (Ar CH), 29.5 (CHMe₂), 26.5 (CH₃), 23.4 (CH₃). ⁷⁷Se NMR (CDCl₃, 76 MHz): δ_{Se} 445.1.

[SeBr(SIPr)]Br₃: m = 132.6 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.54 (t, J = 7.8 Hz, 2H, Ar CH), 7.32 (d, J = 7.8 Hz, 4H, Ar CH), 4.64 (s, 4H, N(CH₂)₂N), 3.13 (sept., J = 6.6 Hz, 4H, CHMe₂), 1.45 (d, J = 6.7 Hz, 12H, CH₃), 1.39 (d, J = 6.7 Hz, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_{C} 163.3 (C-Se), 147.4 (Ar C), 132.4 (Ar CH), 129.6 (Ar C), 125.6 (Ar CH), 55.8 (N(CH₂)₂N), 29.8 (CHMe₂), 26.1 (CH₃), 24.1 (CH₃). ⁷⁷Se NMR (CDCl₃, 76 MHz): δ_{Se} 627.9.

[SeBr₂(IMes)]: m = 138.8 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.43 (s, 2H, N(CH)₂N), 7.07 (s, 4H, Ar CH), 2.39 (s, 6H, CH₃), 2.33 (s, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_{C} 141.3 (C-Se), 141.2 (Ar C), 135.5

¹ M. Saab, D. J. Nelson, N. V. Tzouras, T. A. C. A. Bayrakdar, S. P. Nolan, F. Nahra, K. Van Hecke, Dalton Trans. 2020, 49,12068-12081

(Ar C), 132.3 (Ar C), 130.0 (Ar CH), 126.3 (N(CH)₂N), 21.4 (CH₃), 20.4 (CH₃). ⁷⁷Se NMR (CDCl₃, 76 MHz): δ_{Se} 467.7.

[SeBr₂(SIMes)]: m = 130.1 mg. ¹H NMR (CDCl₃, 400 MHz): δ_H 7.00 (s, 4H, Ar C–H), 4.28 (s, 4H, N(CH₂)₂N), 2.55 (s, 12H, CH₃), 2.33 (s, 6H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_C 167.0 (C-Se), 140.3 (Ar C), 136.1 (Ar C), 132.3 (Ar C), 130.1 (Ar CH), 52.1 (N(CH₂)₂N), 21.3 (CH₃), 20.5 (CH₃). ⁷⁷Se NMR (CDCl₃, 76 MHz): δ_{Se} 501.9.

[SeBr₂(IPr^{Me})]: m = 129.5 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.60 (t, J = 8 Hz, 2H, Ar CH), 7.42 (d, J = 7.8 Hz, 4H, Ar CH), 2.77 (sept, J = 6.6 Hz, 4H, CHMe₂), 2.19 (s, 6H, CH₃), 1.46 (d, J = 6.5 Hz, 12H, CH₃), 1.15 (d, J = 6.7 Hz, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl3, 101 MHz): δ_{C} 146.7 (Ar C), 143.9 (C-Se), 133.0 (Ar C), 132.1 (Ar CH), 130.4 (N(CH)₂N), 125.7 (Ar CH), 29.4 (CHMe₂), 25.6 (CH₃), 25.4 (CH₃), 12.1 (CH₃). ⁷⁷Se NMR (CDCl₃, 76 MHz): δ_{Se} 482.3.

[SeBr(IPr^{CI})]Br₃: m = 128.4 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.67 (t, J = 7.8 Hz, 2H, Ar CH), 7.45 (d, J = 7.8 Hz, 4H, Ar CH), 2.75 (sept, J = 6.1 Hz, 4H, CHMe₂), 1.49 (d, J = 6.4 Hz, 12H, CH₃), 1.24 (d, J = 6.6 Hz, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_{C} 146.9 (Ar C), 141.0 (C-Se), 133.1 (Ar CH), 129.5 (Ar C), 126.0 (Ar CH), 124.3 (N(CH)₂N), 29.9 (CHMe₂), 25.5 (CH₃), 25.4 (CH₃). ⁷⁷Se NMR (CDCl₃, 76 MHz): δ_{Se} 506.5.

[SeBr₂(ICy)]: m = 146.7 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.27 (s, 2H, N(CH)₂N), 5.02 (tt, 2H, J = 3.8 Hz, NCH), 2.43 (m, 4H, CH₂), 1.98–1.95 (m, 4H, CH₂), 1.85–1.82 (m, 2H, CH₂), 1.63–1.54 (m, 8H, CH₂), 1.27–1.25 (m, 2H, CH₂). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 Hz): δ_{C} 141.6 (C-Se), 120.0 (N(CH)₂N), 61.4 (NCH), 33.4 (CH₂), 25.5 (CH₂), 25.2 (CH₂). CHN calculated for C₁₅H₂₄Br₂N₂Se: C, 38.24; H, 5.13; N, 5.95. Found: C, 37.84; H, 5.03; N, 5.82. ⁷⁷Se NMR (CDCl₃, 76 MHz): δ_{Se} 298.6.

[Br₂{Se(IPr*)}]: m = 107.9 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.28 (d, J = 4.8 Hz, 8H, Ar CH), 7.11–7.06 (m, 24H, Ar CH), 6.84–6.69 (m, 12H, Ar CH), 5.76 (s, 4H, CH(Ph)₂), 4.96 (s, 2H, N(CH₂)₂N), 2.25(s, 6H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_{C} 144.2 (Ar C), 142.8 (Ar C), 141.6 (Ar C), 141.2 (C-Se), 140.6 (Ar C), 131.8 (Ar C), 131.2 (Ar CH), 130.8 (Ar CH), 129.4 (Ar CH), 128.5 (Ar CH), 128.3 (Ar CH), 126.7 (Ar CH), 126.6 (Ar CH), 124.7 (CH_{imid}), 51.0 (CHPh₂), 22.0 (CH₃). ⁷⁷Se NMR (CDCl₃, 76 MHz): δ_{Se} 462.2.

Dibromo-thioureas

[(Br₂)·S(IPr)}]: m = 135.2 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.89 (s, 2H, N(CH)₂N), 7.64 (t, J = 7.8 Hz, 2H, Ar CH), 7.42 (d, J = 8 Hz, 4H, Ar CH), 2.37 (sept, J = 6.5 Hz, 4H, CHMe₂), 1.38 (d, J = 6.8 Hz, 12H, CH₃), 1.26 (d, J = 6.8 Hz, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_{C} 202.0 (C-S), 145.4 (Ar C), 132.7 (Ar C), 130.2 (Ar CH) (determined with HMBC), 129.7 (N(CH)₂N) (determined with HMBC), 125.3 (Ar CH), 29.8 (CHMe₂), 26.0 (CH₃), 23.6 (CH₃).

[(Br₂)·S(SIPr)}]: m = 132.8 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.47 (t, J = 7.8 Hz, 2H, Ar CH), 7.28 (d, J = 7.8 Hz, 4H, Ar CH), 4.23 (s, 4H, N(CH₂)₂N), 2.98 (sept., J = 6.8 Hz, 4H, CHMe₂), 1.39 (d, J = 6.8 Hz, 12H, CH₃), 1.35 (d, J = 6.9 Hz, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_{C} 177.8 (C-S) (determined with HMBC), 147.1 (Ar C), 131.9 (Ar C), 131.1 (Ar CH), 125.2 (Ar CH), 52.8 (N(CH₂)₂N), 29.5 (CHMe₂), 25.3 (CH₃), 24.2 (CH₃).

[(Br₂)·S(IMes)}]: m = 140.1 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.08 (s, 2H, N(CH)₂N), 7.05 (s, 4H, Ar CH), 2.36 (s, 6H, CH₃), 2.15 (s, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_{C} 141.0 (C-S), 137.9 (Ar C), 135.8 (Ar C), 134.8 (Ar C), 130.1 (N(CH)₂N), 129.9 (Ar CH), 21.4 (CH₃), 20.4 (CH₃).

[(Br₂)·S(SIMes)}]: m = 139.8 mg. ¹H NMR (CDCl₃, 400 MHz): δ_H 7.00 (s, 4H, Ar C-H), 4.20 (s, 4H, N(CH₂)₂N), 2.33 (s, 12H, CH₃), 2.32 (s, 6H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_C 173.9 (C-S), 140.3 (Ar C), 135.9 (Ar C), 132.2 (Ar C), 130.2 (Ar CH), 50.3 (N(CH₂)₂N), 21.3 (CH₃), 18.1 (CH₃).

[SBr·(IPr^{Me})]Br₃: m = 130.1 mg. ¹H NMR (CDCl₃, 500 MHz): δ_{H} 7.58 (t, J = 7.8 Hz, 2H, Ar CH), 7.41 (d, J = 7.8 Hz, 4H, Ar CH), 2.88 (sept, J = 8 Hz, 4H, CHMe₂), 2.15 (s, 6H, CH₃), 1.45 (d, J = 6.5 Hz, 12H, CH₃), 1.11 (d, J = 6.8 Hz, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl3, 125 MHz): δ_{C} (C-S signal was not located), 147.2 (Ar C), 131.8 (Ar CH), 131.3 (N(CH)₂N) (HMBC), 130.4 (Ar C) (HMBC), 125.4 (Ar CH), 29.1 (CHMe₂), 25.5 (CH₃), 25.3 (CH₃), 11.8 (CH₃). The carbon attached to sulfur could not be located.

[(Br₂)·S(IPr^{CI})]: m = 126.0 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.53(t, J = 7.8 Hz, 2H, Ar CH), 7.33 (d, J = 7.8 Hz, 4H, Ar CH), 2.65 (sept, J = 6.8 Hz, 4H, CHMe₂), 1.31 (d, J = 6.8 Hz, 12H, CH₃), 1.26 (d, J = 6.9 Hz, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_{C} 165.4 (C-S), 147.2 (Ar C), 131.1 (Ar CH), 130.4 (Ar C), 124.6 (Ar CH), 114.0 (N(CH)₂N), 29.6 (CHMe₂), 24.0 (CH₃), 24.0 (CH₃).

[SBr·(ICy)]Br: m = 152.4 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.28 (s, 2H, N(CH)₂N), 4.96 (tt, 2H, J = 7.8 Hz, NCH), 2.44-2.42 (m, 4H, CH₂), 1.97–1.90 (m, 4H, CH₂), 1.84–1.80 (m, 2H, CH₂), 1.63–1.46 (m, 8H, CH₂), 1.29–1.22 (m, 2H, CH₂). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 Hz): δ_{C} (C-S signal was not located), 119.4 (N(CH)₂N), 59.6 (NCH), 32.9 (CH₂), 25.4 (CH₂), 25.2 (CH₂).

General procedure for the synthesis of NHC-based dichloro-chalcogenoureas

100 mg of seleno- or thiourea NHCs were dissolved in 3 mL of dichloromethane. 1.2 equiv. of SO_2Cl_2 was added to the solution and the mixture was stirred for 4 h at room temperature. The product was then washed with pentane and dried in the vacuum oven.

Dichloro-selenoureas

[SeCl₂(IPr)]: m = 112.8 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.58 (t, J = 7.8 Hz, 2H, Ar CH), 7.41 (s, 2H, N(CH)₂N), 7.40 (d, J = 7.8 Hz, 4H, Ar CH), 2.89 (sept, J = 8 Hz, 4H, CHMe₂), 1.44 (d, J = 6.6 Hz, 12H, CH₃), 1.13 (d, J = 6.9 Hz, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_{C} 150.6 (C-Se), 146.3 (Ar C), 132.4 (Ar C), 131.9 (Ar CH), 125.4 (N(CH)₂N), 124.8 (Ar CH), 29.3 (CHMe₂), 26.5 (CH₃), 23.1 (CH₃). CHN calculated for C₂₇H₃₆Cl₂N₂Se: C, 60.23; H, 6.74; N, 5.20. Found: C, 59.77; H, 6.67; N, 5.13. ⁷⁷Se NMR (CDCl₃, 76 MHz): δ_{Se} 526.7.

[SeCl₂(SIPr)]: m = 110.4 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.47 (t, J = 4 Hz, 2H, Ar CH), 7.32 (d, J = 7.8 Hz, 4H, Ar CH), 4.36 (s, 4H, N(CH₂)₂N), 3.29 (sept., J = 8 Hz, 4H, CHMe₂), 1.50 (d, J = 6.5 Hz, 12H, CH₃), 1.27 (d, J = 6.8 Hz, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_{C} 171.8 (C-Se) (determined by HMBC), 146.9 (Ar C), 132.9 (Ar C), 130.9 (Ar CH), 125.0 (Ar CH), 53.7 (N(CH₂)₂N), 29.5 (CHMe₂), 27.0 (CH₃), 23.8 (CH₃). ⁷⁷Se NMR (CDCl₃, 76 MHz): δ_{Se} 197.3.

[SeCl₂(IMes)]: m = 109.1 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.38 (s, 2H, N(CH)₂N), 7.06 (s, 4H, Ar CH), 2.38 (s, 6H, CH₃), 2.31 (s, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_{C} 141.2 (Ar C), 135.7 (C-Se), 132.3 (Ar C), 130.8 (Ar C), 129.9 (Ar CH), 125.0 (N(CH)₂N), 21.4 (CH₃), 19.4 (CH₃). ⁷⁷Se NMR (CDCl₃, 76 MHz): δ_{Se} 551.5 (a second unidentified Se signal was observed at 558.9 ppm).

[SeCl₂(SIMes)]: m = 112.4 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.00 (s, 4H, Ar CH), 4.31 (s, 4H, N(CH₂)₂N), 2.53 (s, 6H, CH₃), 2.33 (s, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_{C} 169.9 (C-Se), 140.2 (Ar C),

136.3 (Ar C), 132.4 (Ar C), 130.0 (Ar CH), 51.4 (N(CH₂)₂N), 21.3 (CH₃), 19.6 (CH₃). **CHN calculated for C**₂₁**H**₂₆**Cl**₂**N**₂**Se:** C, 55.28; H, 5.74; N, 6.14. Found: C, 54.74; H, 5.70; N, 6.04. ⁷⁷**Se NMR** (CDCl₃, 76 MHz): δ_{Se} 586.9.

[SeCl₂(IPr^{Me})]: m = 108.5 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.58 (t, J = 8 Hz, 2H, Ar CH), 7.41 (d, J = 7.8 Hz, 4H, Ar CH), 2.87 (sept, J = 8 Hz, 4H, CHMe2), 2.16 (s, 6H, CH₃), 1.45 (d, J = 6.5 Hz, 12H, CH3), 1.11 (d, J = 6.8 Hz, 12H, CH3). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_{C} 147.0 (Ar C), 145.5 (C-Se), 132.2 (Ar CH), 130.5 (Ar C), 125.5 (Ar CH), 125.2 N(CH)₂N), 29.2 (CHMe₂), 25.4 (CH₃), 25.3 (CH₃), 11.8 (CH₃). ⁷⁷Se NMR (CDCl₃, 76 MHz): δ_{Se} 554.3.

[SeCl₂(IPr^{Cl})]: m = 110.9 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.63 (t, J = 7.8 Hz, 2H, Ar CH), 7.43 (d, J = 7.8 Hz, 4H, Ar CH), 2.86 (sept, J = 6.6 Hz, 4H, CHMe₂), 1.47 (d, J = 6.5 Hz, 12H, CH₃), 1.20 (d, J = 6.8 Hz, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl3, 101 MHz): 180.6 (C-Se), 147.2 (Ar C), 131.7 (Ar CH), 130.0 (Ar C) (HMBC), 128.4 (N(CH)₂N), 125.4 (Ar CH), 29.7 (CHMe₂), 25.6 (CH₃), 25.1 (CH₃). CHN calculated for C₂₇H₃₄Cl₄N₂Se: C, 53.40; H, 5.64; N, 4.61. Found: C, 52.74; H, 5.59; N, 4.48. ⁷⁷Se NMR (CDCl₃, 76 MHz): δ_{Se} 546.9.

[SeCl₂(ICy)]: m = 120.3 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.27 (s, 2H, N(CH)₂N), 5.05 (tt, 2H, J = 4 Hz, NCH), 2.39 (m, 4H, CH₂), 1.97–1.92 (m, 4H, CH₂), 1.84–1.77 (m, 2H, CH₂), 1.66–1.52 (m, 8H, CH₂), 1.29–1.19 (m, 2H, CH₂). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 Hz): δ_{C} 144.9 (C-Se), 119.1 (N(CH)₂N), 61.1 (NCH), 33.5 (CH₂), 25.4 (CH₂), 25.2 (CH₂). CHN calculated for C₁₅H₂₄Cl₂N₂Se: C, 47.14; H, 6.33; N, 7.33. Found: C, 46.75; H, 6.24; N, 7.10. ⁷⁷Se NMR (CDCl₃, 76 MHz): δ_{Se} 441.6.

[SeCl₂(IPr^{*})]: m = 101.7 mg. ¹H NMR (CDCl₃, 400 MHz): 7.27 (d, J = 4.3 Hz, 8H, Ar CH), 7.24–7.01 (m, 24H, Ar CH), 6.78–6.65 (m, 12H, Ar CH), 5.89 (s, 4H, CH(Ph)₂), 4.85 (s, 2H, N(CH₂)₂N), 2.22 (s, 6H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δC 166.0 (C-Se), 145.4 (Ar C), 144.0 (Ar C), 143.2 (Ar C), 141.9 (Ar C), 140.5 (Ar C), 131.2 (Ar C), 130.6 (Ar CH), 129.4 (Ar CH), 128.5 (Ar CH), 128.3 (Ar CH), 126.7 (Ar CH), 126.6 (Ar CH), 124.2 (CH_{imid}), 50.7 (CHPh₂), 22.0 (CH₃). ⁷⁷Se NMR (CDCl₃, 76 MHz): δ_{Se} 519.8.

General procedure for the synthesis of NHC-based diiodo-chalcogenoureas

100 mg of seleno- or thio-urea NHCs was dissolved in 3 mL of acetone. 1.2 equiv. of iodine was added to the solution and the mixture was stirred for 5 h at room temperature. The product was then washed with pentane and dried.

Diiodo-selenoureas

[(I₂)·Se(IPr)]: m = 146.5 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.58 (t, J = 7.8 Hz, 2H, Ar CH), 7.36 (d, J = 7.8 Hz, 4H, Ar CH), 7.27 (s, 2H, N(CH)₂N), 2.50 (sept, J = 6.8 Hz, 4H, CHMe₂), 1.41 (d, J = 6.8 Hz, 12H, CH₃), 1.19 (d, J = 6.9 Hz, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_{C} 150.5 (C-Se) (determined by HMBC), 145.7 (Ar C), 132.5 (Ar C), 131.8 (Ar CH), 125.0 (Ar CH), 124.4 (N(CH)₂N), 29.5 (CHMe₂), 25.4 (CH₃), 23.6 (CH₃). ⁷⁷Se NMR (CDCl₃, 76 MHz): δ_{Se} 264.5. CHN calculated for C₂₇H₃₆I₂N₂Se: C, 44.96; H, 5.03; N, 3.88. Found: C, 45.18; H, 5.01; N, 4.01.

[{Se(SIPr)}₂(μ-I)]I₅: m = 146.3 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.50 (t, J = 7.8 Hz, 2H, Ar CH), 7.29 (d, J = 7.8 Hz, 4H, Ar CH), 4.14 (s, 4H, N(CH₂)₂N), 2.94 (sept., J = 6.6 Hz, 4H, CHMe₂), 1.42 (d, J = 6.7 Hz, 12H, CH₃), 1.31 (d, J = 6.7 Hz, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_{C} 175.0 (C-Se), 146.9 (Ar C), 132.9 (Ar C), 131.2 (Ar CH), 125.3 (Ar CH), 53.0 (N(CH₂)₂N), 29.5 (CHMe₂), 25.4 (CH₃), 24.3 (CH₃). ⁷⁷Se NMR (CDCl₃, 101 MHz):

76 MHz): δ_{se} 339.9. **CHN calculated for C₂₇H₃₈I₂N₂Se:** C, 44.83; H, 5.30; N, 3.87. Found: C, 44.87; H, 5.27; N, 3.98.

[(I₂)·Se(IMes)]: m = 154.5 mg. ¹H NMR (CDCl₃, 400 MHz): δ_H 7.33 (s, 2H, N(CH)₂N), 7.10 (s, 4H, Ar CH), 2.41 (s, 6H, CH₃), 2.15 (s, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_C 160.2 (C-Se), 141.4 (Ar C), 134.8 (Ar C), 132.5 (Ar C), 130.1 (Ar CH), 124.4 (N(CH)₂N), 21.5 (CH₃), 18.6 (CH₃). ⁷⁷Se NMR (CDCl₃, 76 MHz): δ_{Se} 262.7.

[(I₂)·Se(SIMes)]: yield = 91%, m = 150.9 mg. ¹H NMR (CDCl₃, 400 MHz): δ_H 7.02 (s, 4H, Ar C–H), 4.13 (s, 4H, N(CH₂)₂N), 2.36 (s, 12H, CH₃), 2.32 (s, 6H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_C 170.0 (C-Se), 140.7 (Ar C), 136.1 (Ar C), 132.7 (Ar C), 130.3 (Ar CH), 50.8 (N(CH₂)₂N), 21.4 (CH₃), 18.3 (CH₃). ⁷⁷Se NMR (CDCl₃, 76 MHz): δ_{Se} 315.6.

[Sel(IPr^{Me})]I₃: m = 139.1 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.64 (t, J = 7.8 Hz, 2H, Ar CH), 7.39 (d, J = 7.8 Hz, 4H, Ar CH), 2.39 (sept, J = 4 Hz, 4H, CHMe₂), 2.06 (s, 6H, CH₃), 1.38 (d, J = 6.4 Hz, 12H, CH₃), 1.23 (d, J = 6.1 Hz, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_{C} (C-S signal was not located), 146.1 (Ar C), 132.2 (Ar CH), 130.2 (Ar C), 128.4 (N(CH)₂N), 125.4 (Ar CH), 29.4 (CHMe₂), 24.4 (CH₃), 24.3 (CH₃), 10.3 (CH₃). ⁷⁷Se NMR (CDCl₃, 76 MHz): δ_{Se} 327.7.

[(I₂)·Se(IPr^{CI})]: m = 138.4 mg. ¹H NMR (CDCI₃, 400 MHz): δ_{H} 7.66 (t, J = 7.8 Hz, 2H, Ar CH), 7.40 (d, J = 7.8 Hz, 4H, Ar CH), 2.43 (sept, J = 6.8 Hz, 4H, CHMe₂), 1.38 (d, J = 6.8 Hz, 12H, CH₃), 1.26 (d, J = 6.9 Hz, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCI₃, 101 MHz): 148.0 (C-Se), 146.5 (Ar C), 132.8 (Ar C), 129.4 (Ar CH), 125.4 (Ar CH), 119.4 (N(CH)₂N), 29.8 (CHMe₂), 24.3 (CH₃), 23.9 (CH₃). ⁷⁷Se NMR (CDCI₃, 76 MHz): δ_{Se} 341.7.

[Sel₂(ICy)]: m = 168.8 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.33 (s, 2H, N(CH)₂N), 4.85 (tt, 2H, J = 3.7 Hz, NCH), 2.44-2.41 (m, 4H, CH₂), 2.00–1.96 (m, 4H, CH₂), 1.86–1.83 (m, 2H, CH₂), 1.65–1.47 (m, 8H, CH₂), 1.30–1.23 (m, 2H, CH₂). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 Hz): δ_{C} 137.5 (C-Se), 120.4 (N(CH)₂N), 61.6 (NCH), 32.8 (CH₂), 25.4 (CH₂), 25.2 (CH₂). ⁷⁷Se NMR (CDCl₃, 76 MHz): δ_{Se} 98.4.

[(I₂)·Se(IPr*)]: m = 118.0 mg. ¹H NMR (CDCI₃, 400 MHz): δ_{H} 7.29 (d, J = 8 Hz, 8H, Ar CH), 7.25–7.08 (m, 24H, Ar CH), 6.89–6.76 (m, 12H, Ar CH), 5.33 (s, 4H, CH(Ph)2), 5.21 (s, 2H, N(CH₂)₂N), 2.29(s, 6H, CH₃). ¹³C{¹H} **DEPT Q NMR** (CDCI₃, 101 MHz): δ_{C} 147.7 (C-Se), 143.0 (Ar C), 142.1 (Ar C), 141.5 (Ar C), 141.3 (Ar C), 132.0 (Ar C), 130.9 (Ar C), 130.3 (Ar CH), 129.3 (Ar CH), 128.7 (Ar CH), 128.5 (Ar CH), 126.1 (Ar CH), 126.9 (CH_{imid}), 123.5 (Ar CH) (determined by HMBC), 52.1 (CHPh₂), 22.2 (CH₃). ⁷⁷Se NMR (CDCI₃, 76 MHz): δ_{se} 280.8.

Diiodo-thioureas

[(I₂)·S(IPr)]: m = 152.3 mg. ¹H NMR (CDCI₃, 400 MHz): δ_{H} 7.54 (t, J = 7.8 Hz, 2H, Ar CH), 7.35 (d, J = 7.8 Hz, 4H, Ar CH), 7.11 (s, 2H, N(CH)₂N), 2.58 (sept, J = 6.8 Hz, 4H, CHMe₂), 1.39 (d, J = 6.8 Hz, 12H, CH₃), 1.20 (d, J = 6.9 Hz, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCI₃, 101 MHz): δ_{C} 157.1 (C-S) (determined by HMBC), 146.0 (Ar C), 132.4 (Ar C), 131.3 (Ar CH), 124.8 (Ar CH), 122.2 (N(CH)₂N), 29.4 (CHMe₂), 25.3 (CH₃), 23.6 (CH₃). CHN calculated for C₂₇H₃₆I₂N₂S: C, 48.08; H, 5.38; N, 4.15. Found: C, 47.62; H, 5.25; N, 3.95.

[(I₂)·S(SIPr)]: m = 151.9 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.46 (t, J = 7.8 Hz, 2H, Ar CH), 7.29 (d, J = 7.8 Hz, 4H, Ar CH), 4.25 (s, 4H, N(CH₂)₂N), 3.01 (sept., J = 8 Hz, 4H, CHMe₂), 1.37 (d, J = 2.2 Hz, 12H, CH₃), 1.35 (d, J = 2.1 Hz, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_{C} 167.1 (C-S), 147.4 (Ar C), 130.8 (Ar CH), 126.0 (Ar C), 125.2 (Ar CH), 52.1 (N(CH₂)₂N), 29.4 (CHMe₂), 25.0 (CH₃), 24.5 (CH₃).

[(I₂)·S(IMes)]: m = 157.8 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.10 (s, 2H, N(CH)₂N), 7.06 (s, 4H, Ar CH), 2.38 (s, 6H, CH₃), 2.16 (s, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_{C} 153.5 (C-S), 140.7 (Ar C), 135.1 (Ar C), 132.4 (Ar C), 129.9 (Ar CH), 121.8 (N(CH)₂N), 21.4 (CH₃), 18.5 (CH₃). CHN calculated for C₂₁H₂₄I₂N₂S: C, 42.73; H, 4.10; N, 4.75. Found: C, 42.58; H, 4.05; N, 4.76.

[(I₂)·S(SIMes)]: m = 164.4 mg. ¹H NMR (CDCI₃, 400 MHz): δ_{H} 7.00 (s, 4H, Ar C–H), 4.05 (s, 4H, N(CH₂)₂N), 2.33 (s, 6H, CH₃), 2.32 (s, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCI₃, 101 MHz): δ_{C} 176.6 (C-S), 139.6 (Ar C), 136.4 (Ar C), 133.4 (Ar C), 130.0 (Ar CH), 49.0 (N(CH₂)₂N), 21.3 (CH₃), 18.1 (CH₃).

[(I₂)·S(IPr^{Me})]: m = 142.5 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.55 (t, J = 7.8 Hz, 2H, Ar CH), 7.35 (d, J = 7.8 Hz, 4H, Ar CH), 2.49 (sept, J = 6.7 Hz, 4H, CHMe₂), 1.97 (s, 6H, CH₃), 1.35 (d, J = 6.8 Hz, 12H, CH3), 1.21 (d, J = 6.9 Hz, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_{C} 176.6 (C-S), 146.4 (Ar C), 131.4 (Ar CH), 130.5 (Ar C), 125.4 (N(CH)₂N), 125.0 (Ar CH), 29.3 (CHMe₂), 24.3 (CH3), 24.2 (CH₃), 10.1 (CH₃).

[(I₂)·S(IPr^{CI})]: m = 139.6 mg. ¹H NMR (CDCI₃, 400 MHz): δ_{H} 7.55(t, J = 8 Hz, 2H, Ar CH), 7.34 (d, J = 7.8 Hz, 4H, Ar CH), 2.59 (sept, J = 6.9 Hz, 4H, CHMe₂), 1.32 (d, J = 6.8 Hz, 12H, CH₃), 1.25 (d, J = 6.9 Hz, 12H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCI₃, 101 MHz): δ_{C} 162.8 (C-S), 147.1 (Ar C), 131.5 (Ar CH), 130.0 (Ar C), 124.8 (Ar CH), 115.1 (N(CH)₂N), 29.6 (CHMe₂), 24.1 (CH₃), 24.0 (CH₃). CHN calculated for C₂₇H₃₄I₂CI₂N₂Se: C, 43.63; H, 4.61; N, 3.77. Found: C, 43.81; H, 4.64; N, 3.96.

[(l₂)·S(ICy)]: m = 178.3 mg. ¹H NMR (CDCl₃, 400 MHz): δ_{H} 7.12 (s, 2H, N(CH)₂N), 4.69 (tt, 2H, J = 4 Hz, NCH), 2.17-2.15 (m, 4H, CH₂), 1.97–1.91 (m, 4H, CH₂), 1.82–1.79 (m, 2H, CH₂), 1.60–1.45 (m, 8H, CH₂), 1.29–1.19 (m, 2H, CH₂). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 Hz): δ_{C} 147.3 (C-S), 118.2 (N(CH)₂N), 58.4 (NCH), 33.2 (CH₂), 25.5 (CH₂), 25.2 (CH₂).

[(l₂)·S(IPr*)]: m = 114.1 mg. ¹H NMR (CDCl₃, 400 MHz): 7.28 (d, J = 8 Hz, 8H, Ar CH), 7.25–7.18 (m, 24H, Ar CH), 6.82–6.79 (m, 12H, Ar CH), 5.37 (s, 4H, CH(Ph)₂), 5.24 (s, 2H, N(CH₂)₂N), 2.24 (s, 6H, CH₃). ¹³C{¹H} DEPT Q NMR (CDCl₃, 101 MHz): δ_{c} 160.8 (C-S) (determined by HMBC), 143.0 (Ar C), 141.7 (Ar C), 140.2 (Ar C), 139.4 (Ar C), 132.5 (Ar C), 130.6 (Ar C), 130.2 (Ar CH), 129.4 (Ar CH), 128.5 (Ar CH), 128.3 (Ar CH), 126.7 (Ar CH), 126.6 (Ar CH), 120.1 (CH_{imid}), 51.9 (CHPh₂), 22.1 (CH₃).

-445.08

where we have a strange the strange of the strange

														·										
1000	950	900	850	800	750	700	650	600	550	500	450	400 f1 (ppm	350 1)	300	250	200	150	100	50	0	-50	-100	-150	-200

-						· · ·																	, ₁ ,	
1000	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0	-50	-100	-150	-200
												f1 (ppm	1)											

¹³C{¹H} DEPT Q NMR

Abs Denne Assertion and a second as a second and a

																-
		1														
700)	650	600	550	500	450	400	350 f1 (ppm)	300	250	200	150	100	50	0	

-	1								· · ·								Т
7	50	700	650	600	550	500	450	400 f1 (350 ppm)	300	250	200	150	100	50	0	

⁷⁷Se NMR

100	00	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0	-50	-100	-150	-200
													TI (ppm	1)											

																								_
1000	950	900	850	800	750	700	650	600	550	500	450	400 f1 (ppm	350)	300	250	200	150	100	50	0	-50	-100	-150	-200

--441.55

1000	950	900	850	800	750	700	650	600	550	500	450	400 f1 (ppm)	350)	300	250	200	150	100	50	0	-50	-100	-150	-200

--519.77

Reaction of [S(SIMes)] with SO₂Cl₂

 1 H NMR

--264.53

																							_	Ē
1000	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0	-50	-100	-150	-200
											t	f1 (ppm)											

-		_	· · · ·	· · · ·		· · ·					· · ·		· · ·				· · ·							
1000	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0	-50	-100	-150	-200
												TI (ppn	1)											

-262.72

1000	950	900	850	800	750	700	650	600	550	500	450	400 f1 (nnm	350	300	250	200	150	100	50	0	-50	-100	-150	-200
												II (PPIII												

--315.63

-		· · ·																						
1000	950	900	850	800	750	700	650	600	550	500	450	400 f1 (ppn	350 1)	300	250	200	150	100	50	0	-50	-100	-150	-200

-327.70

																						· · · ·	_	
1000	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0	-50	-100	-150	-200
												ri (ppm)											

-341.73

850	800	750	700	650	600	550	500	450	400 f1 (ppm)	350	300	250	200	150	100	50	0	-50

---98.35

والمتحمد والمتعاونة والمتعادية والمتعاولة والمتعاولة والمتعاولة والمتعاولة والمتعاولة والمتعاولة والمتعاولة وال	فيصلحكم والأمراء والمرارية والمتر أمورهم ومرارية والمرارية المرارية المرارية المرارية المرارية المرارية والروم	وميدينة بنام والمحمد والمطلق الم	المأق المتحالية المراجع والمراجع والمتحاصية المرجع المراجع المراجع المراجع المراجع المراجع المراجع
 APPENDARIA AND A PROPERTING A PROPERTY AND A PROPERTY	an in an indiana mandra ta an indiana an indiana dha an an indiana an indiana an indiana an indiana an indiana	I MANALANANIN'NANA MAN	The William Manufacture and the state of the

1000	950	900	850	800	750	700	650	600	550	500	450	400 f1 (ppm	350	300	250	200	150	100	50	0	-50	-100	-150	-200
												·- (FF····	,											

																						<u> </u>		
1000	950	900	850	800	750	700	650	600	550	500	450	400 1 (ppm	350)	300	250	200	150	100	50	0	-50	-100	-150	-200

[(I₂)·S(IMes)] ¹H NMR

Crystallographic data

	[SeBr₂(IPr)]	[SeBr(SIPr)]Br ₃ [SeBr ₂ (IMes)]		[SeBr₂(SIMes)]	
CCDC no.	2121842	2121843	2121844	2121845	
Empirical formula	$C_{27}H_{36}Br_2N_2Se$	$C_{27}H_{38}Br_4N_2Se$	$C_{21}H_{24}Br_2N_2Se$	$C_{21}H_{26}Br_2N_2Se$	
Formula weight (g mol ⁻¹)	627.34	789.15	543.18	545.20	
Т (К)	100	100	100	100	
λ (Å)	1.54184	1.54184	1.54184	1.54184	
Crystal system	orthorhombic	monoclinic	orthorhombic	orthorhombic	
Space group	Pnma	P2 ₁ /n	Pnma	Aea2	
a (Å)	12.3667(2)	9.72480(10)	19.6139(4)	18.5263(6)	
b (Å)	20.3331(4)	18.3045(2)	14.3164(3)	15.6201(6)	
c (Å)	10.4430(2)	17.8287(3)	7.58200(10)	7.3666(2)	
α (°)	90	90	90	90	
β (°)	90	98.1660(10)	90	90	
γ (°)	90	90	90	90	
V (Å ³)	2625.93(8)	3141.47(7)	2129.03(7)	2131.77(12)	
Z	4	4	4	4	
ρ_{calc} (g cm ⁻³)	1.587	1.669	1.695	1.699	
μ (mm⁻¹)	5.620	7.703	6.829	6.821	
F (000)	1264.0	1552.0	1072.0	1080.0	
Crystal dimensions (mm ³)	0.095 × 0.061 × 0.039	0.209 × 0.085 × 0.061	0.181 × 0.127 × 0.052	0.16 × 0.12 × 0.11	
2θ max (°)	147.572	147.848	147.736	147.798	
Reflections collected	12990	30317	10733	5586	
Independent reflections	2675	6259	2137	2000	
Parameters refined	155	315	122	122	
Final R indexes	R ₁ = 0.0294,	R ₁ = 0.0290, wR ₂ =	$R_1 = 0.0255, wR_2 =$	$R_1 = 0.0392, wR_2 =$	
[I ₀ >2σ(I ₀)]	$wR_2 = 0.0584$	0.0567	0.0601	0.0958	
R indexes (all data)	$R_1 = 0.0433,$ w $R_2 = 0.0636$	$R_1 = 0.0428, wR_2 = 0.0617$	R ₁ = 0.0331, wR ₂ = 0.0635	R ₁ = 0.0471, wR ₂ = 0.1008	
Goodness-of-fit on F ²	1.015	1.067	1.044	1.034	

	[SeBr ₂ (IPr ^{Me})]	[SeBr(IPr ^{CI})]Br ₃ [SeBr ₂ (ICy)]		[(Br ₂)·S(IMes)}]	
CCDC no.	2121846	2121847	2121848	2121849	
Empirical formula	$C_{30}H_{42}Br_2CI_2N_2Se$	$C_{27}H_{34}Br_4Cl_2N_2Se$	$C_{15}H_{24}Br_2N_2Se$	$C_{21}H_{24}Br_2N_2S$	
Formula weight (g mol ⁻¹)	740.32	856.02	471.12	496.28	
Т (К)	100	100	100	100	
λ (Å)	1.54184	1.54184	1.54184	1.54184	
Crystal system	triclinic	monoclinic	monoclinic	monoclinic	
Space group	P-1	P21/m	P21/c	P21/c	
a (Å)	9.7087(3)	9.8098(2)	10.4196(2)	10.3863(2)	
b (Å)	12.5412(3)	17.0515(2)	7.59630(10)	15.2158(2)	
c (Å)	15.1640(3)	10.0380(2)	22.2930(5)	14.1625(3)	
α (°)	77.201(2)	90	90	90	
β (°)	77.009(2)	110.109(2)	99.888(2)	105.698(2)	
γ (°)	73.293(2)	90	90	90	
V (Å ³)	1698.62(8)	1576.72(5)	1738.29(6)	2154.70(7)	
Z	2	2	4	4	
ρ_{calc} (g cm ⁻³)	1.447	1.803	1.800	1.530	
μ (mm⁻¹)	5.846	9.257	8.240	5.721	
F (000)	748.0	836.0	928.0	1000.0	
Crystal dimensions (mm ³)	0.155 × 0.087 × 0.05	0.183 × 0.1 × 0.072	0.392 × 0.157 × 0.078	0.226 × 0.157 × 0.067	
2θ max (°)	147.708	147.818	147.606	147.63	
Reflections collected	38991	15522	16939	20876	
Independent reflections	6767	3261 3462		4284	
Parameters refined	344	176	181	241	
Final R indexes	$R_1 = 0.0288$, $wR_2 =$	$R_1 = 0.0320$, $wR_2 =$	$R_1 = 0.0464$, $wR_2 =$	$R_1 = 0.0269, wR_2 =$	
[I ₀ >2σ(I ₀)]	0.0678	0.0747	0.1131	0.0653	
R indexes (all data)	R ₁ = 0.0344, wR ₂ = 0.0706	R ₁ = 0.0353, wR ₂ = 0.0764	R ₁ = 0.0474, wR ₂ = 0.1137	R ₁ = 0.0322, wR ₂ = 0.0679	
Goodness-of-fit on F ²	1.044	1.102	1.153	1.080	

	[(Br ₂)·S(SIMes)}]	[S(Br)·(IPr ^{Me})]Br ₃	[S(Br)·(ICy)]Br	
CCDC no.	2121850	2121851	2121852	
Empirical formula	$C_{43}H_{54}Br_4CI_2N_4S_2$	$C_{29}H_{40}Br_4N_2S$	$C_{15}H_{24}Br_2N_2S$	
Formula weight (g mol ⁻¹)	1081.52	768.29	424.22	
Т (К)	100	100	100	
λ (Å)	1.54184	1.54184	1.54184	
Crystal system	monoclinic	monoclinic	monoclinic	
Space group	P2/c	P2 ₁ /m	P21/c	
a (Å)	20.8862(5)	9.7651(2)	10.4976(9)	
b (Å)	8.13980(10)	16.9691(3)	7.4915(5)	
c (Å)	13.9252(2)	10.1288(2)	22.3272(17)	
α (°)	90	90	90	
β (°)	100.044(2)	110.132(2)	101.384(8)	
γ (°)	90	90	90	
V (Å3)	2331.13(7)	1575.85(6)	1721.3(2)	
Z	2	2	4	
ρ_{calc} (g cm ⁻³)	1.541	1.619	1.637	
μ (mm ⁻¹)	6.367	6.999	7.037	
F (000)	1092.0	768.0	856.0	
Crystal dimensions (mm ³)	0.251 × 0.139 × 0.071	0.116 × 0.081 × 0.062	0.221 × 0.134 × 0.079	
2θ max (°)	147.832	147.572	148.522	
Reflections collected	22608	15068	13193	
Independent reflections	4645	3254	3409	
Parameters refined	255	255 177		
Final R indexes	$R_1 = 0.0364$, w $R_2 =$	$R_1 = 0.0355$, w $R_2 =$	$R_1 = 0.0609, wR_2 =$	
[I ₀ >2σ(I ₀)]	0.0931	0.0880	0.1548	
R indexes (all data)	R ₁ = 0.0451, wR ₂ =	$R_1 = 0.0420$, $wR_2 =$	$R_1 = 0.0800, wR_2 =$	
	0.1002	0.0915	0.1775	
Goodness-of-fit on F ²	1.025	1.059	1.020	

	[SeCl ₂ (IPr)]	[SeCl ₂ (SIPr)]	[SeCl ₂ (SIMes)]	[SeCl ₂ (IPr [*])]	[SIMes-Cl]HSO4
CCDC no.	2121853	2121854	2121855	2121856	2121857
Empirical formula	$C_{27}H_{36}CI_2N_2Se$	$C_{27}H_{38}CI_2N_2Se$	$C_{21}H_{26}CI_2N_2Se$	$C_{69}H_{56}CI_2N_2Se$	$C_{21}H_{27}CIN_2O_4S$
Formula weight (g mol ⁻¹)	538.44	540.45	456.30	1063.02	438.95
Т (К)	100	100	100	100	100
λ (Å)	1.54184	1.54184	1.54184	1.54184	1.54184
Crystal system	tetragonal	orthorhombic	monoclinic	triclinic	triclinic
Space group	P4 ₃ 2 ₁ 2	Pbca	P2₁/n	P-1	P-1
a (Å)	14.07600(10)	19.3439(3)	7.3535(2)	10.5501(4)	11.7200(7)
b (Å)	14.07600(10)	12.9998(2)	15.3563(4)	13.3094(5)	13.2714(8)
c (Å)	13.5004(2)	21.4322(4)	18.1591(4)	21.9568(9)	15.9571(8)
α (°)	90	90	90	104.727(3)	78.387(5)
β (°)	90	90	92.485(2)	92.152(3)	74.490(5)
γ (°)	90	90	90	96.504(3)	66.020(6)
V (Å ³)	2674.89(5)	5389.49(15)	2048.64(9)	2955.5(2)	2173.0(2)
Z	4	8	4	2	4
ρ_{calc} (g cm ⁻³)	1.337	1.332	1.479	1.194	1.342
μ (mm⁻¹)	3.855	3.826	4.926	2.001	2.702
F (000)	1120.0	2256.0	936.0	1104.0	928.0
Crystal dimensions	0.179 × 0.118 ×	0.27 × 0.157 ×	0.127 × 0.088 ×	$0.132 \times 0.097 \times$	0.128 × 0.085 ×
(mm³)	0.088	0.084	0.04	0.064	0.054
2θ max (°)	147.576	147.81	147.444	148.022	147.664
Reflections collected	13122	26447	19695	42669	32389
Independent reflections	2688	5362	4089	11737	8649
Parameters refined	150	297	241	669	537
Final R indexes $[I_0>2\sigma(I_0)]$	$R_1 = 0.0295,$ $wR_2 = 0.0654$	$R_1 = 0.0443,$ $wR_2 = 0.1065$	$R_1 = 0.0471,$ w $R_2 = 0.1113$	$R_1 = 0.0674,$ $wR_2 = 0.1660$	$R_1 = 0.0514,$ w $R_2 = 0.0976$
R indexes (all data)	$R_1 = 0.0353,$ $wR_2 = 0.0680$	$R_1 = 0.0550,$ $wR_2 = 0.1158$	$R_1 = 0.0631,$ $wR_2 = 0.1187$	$R_1 = 0.0837,$ $wR_2 = 0.1772$	$R_1 = 0.0912,$ w $R_2 = 0.1141$
Goodness-of-fit on F ²	1.043	1.040	1.109	1.044	0.992

	[l₂·Se(IPr)]	[I ₂ ·Se(IMes)]	[I2·Se(SIMes)]	[l ₂ ·Se(IPr ^{CI})]	[{Se(SIPr)}₂(µ-I)]I₅
CCDC no.	2121858	2121859	2121860	2121861	2121862
Empirical formula	$C_{28}H_{38}Cl_2l_2N_2Se$	$C_{21}H_{24}I_2N_2Se$	$C_{21}H_{26}I_2N_2Se$	$C_{27}H_{34}Cl_2l_2N_2Se$	$C_{55}H_{78}CI_2I_6N_4Se_2$
Formula weight (g mol ⁻¹)	806.26	637.18	639.20	790.22	1785.44
Т (К)	100	100	100	100	100
λ (Å)	1.54184	1.54184	1.54184	1.54184	1.54184
Crystal system	monoclinic	monoclinic	monoclinic	triclinic	monoclinic
Space group	P2 ₁ /n	P2 ₁ /n	C2/c	P-1	P2 ₁ /n
a (Å)	10.7433(2)	7.4915(2)	30.1615(4)	8.6805(2)	10.67600(10)
b (Å)	18.7344(2)	15.8395(5)	44.2672(7)	10.5911(2)	32.7882(2)
c (Å)	16.2982(2)	19.5337(5)	18.8321(3)	18.1694(4)	18.84640(10)
α (°)	90	90	90	74.003(2)	90
β (°)	102.6540(10)	95.970(3)	97.730(2)	89.506(2)	90.7280(10)
γ (°)	90	90	90	73.080(2)	90
V (ų)	3200.65(8)	2305.33(11)	24915.5(7)	1531.57(6)	6596.59(8)
Z	4	4	40	2	4
ρ_{calc} (g cm ⁻³)	1.673	1.836	1.704	1.714	1.798
μ (mm⁻¹)	18.405	23.276	21.537	19.219	24.459
F (000)	1576.0	1216.0	12240.0	768.0	3424.0
Crystal dimensions (mm ³)	0.166 × 0.087 × 0.078	0.077 × 0.065 × 0.049	0.184 × 0.11 × 0.068	0.254 × 0.119 × 0.088	0.277 × 0.201 × 0.103
2θ max (°)	147.838	147.69	148.646	147.546	147.812
Reflections collected	36795	17618	119022	23063	41544
Independent reflections	6397	4617	24869	6085	12790
Parameters refined	324	241	1201	315	638
Final R indexes $[I_0>2\sigma(I_0)]$	$R_1 = 0.0350,$ $wR_2 = 0.0886$	$R_1 = 0.0495,$ $wR_2 = 0.0989$	$R_1 = 0.0435,$ $wR_2 = 0.0746$	$R_1 = 0.0257,$ $wR_2 = 0.0621$	R ₁ = 0.0404, wR ₂ = 0.1016
R indexes (all data)	$R_1 = 0.0408,$ w $R_2 = 0.0933$	R ₁ = 0.0801, wR ₂ = 0.1196	$R_1 = 0.0885,$ w $R_2 = 0.0913$	$R_1 = 0.0287,$ w $R_2 = 0.0640$	R ₁ = 0.0448, wR ₂ = 0.1054
Goodness-of-fit on F ²	1.019	1.089	0.948	1.059	1.041

	[Sel ₂ (ICy)]	[Sel(IPr ^{Me})]I₃	[I ₂ ·S(IPr*)]	[I ₂ ·S(IMes)]	[l ₂ ·S(ICy)]
CCDC no.	2121863	2121864	2121865	2121866	2121867
Empirical formula	$C_{15}H_{24}I_2N_2Se$	$C_{29}H_{40}I_4N_2Se$	$C_{69}H_{56}I_2N_2S$	$C_{21}H_{24}I_2N_2S$	$C_{31}H_{50}Cl_2l_4N_4S_2$
Formula weight (g mol ⁻¹)	565.12	1003.19	1199.02	590.28	1121.37
Т (К)	100	100	100	100	100
λ (Å)	1.54184	1.54184	1.54184	1.54184	1.54184
Crystal system	triclinic	monoclinic	monoclinic	monoclinic	monoclinic
Space group	P-1	P2₁/m	P21/c	P21/c	P2/n
a (Å)	10.4570(4)	10.2704(2)	13.00810(10)	12.55015(17)	14.8192(6)
b (Å)	11.6249(5)	16.8187(3)	17.9100(2)	11.35537(12)	9.6293(3)
c (Å)	16.1590(7)	10.5634(2)	24.2237(2)	15.8885(2)	15.9429(6)
α (°)	107.039(4)	90	90	90	90
β (°)	101.991(3)	110.816(2)	93.0680(10)	96.6229(11)	117.447(5)
γ(°)	91.225(3)	90	90	90	90
V (Å ³)	1829.99(14)	1705.56(6)	5635.43(9)	2249.19(5)	2018.95(15)
Z	4	2	4	4	2
ρ_{calc} (g cm ⁻³)	2.051	1.953	1.413	1.743	1.845
μ (mm ⁻¹)	29.205	30.052	9.437	22.874	26.621
F (000)	1072.0	948.0	2424.0	1144.0	1084.0
Crystal dimensions (mm ³)	0.123 × 0.082 × 0.049	0.09 × 0.068 × 0.039	0.14 × 0.119 × 0.08	0.1 × 0.087 × 0.067	0.14 × 0.111 × 0.054
2θ max (°)	148.124	147.504	147.826	147.816	147.894
Reflections collected	34175	14762	54281	21875	9337
Independent reflections	7269	3515	11204	4500	3769
Parameters refined	361	177	669	241	195
Final R indexes $[I_0>2\sigma(I_0)]$	$R_1 = 0.0409,$ w $R_2 = 0.0973$	$R_1 = 0.0451,$ w $R_2 = 0.1197$	$R_1 = 0.0346,$ w $R_2 = 0.0840$	$R_1 = 0.0234,$ w $R_2 = 0.0487$	$R_1 = 0.0561,$ w $R_2 = 0.1573$
R indexes (all data)	$R_1 = 0.0546,$ w $R_2 = 0.1059$	$R_1 = 0.0542,$ w $R_2 = 0.1263$	$R_1 = 0.0494,$ w $R_2 = 0.0916$	$R_1 = 0.0313,$ w $R_2 = 0.0518$	$R_1 = 0.0669,$ w $R_2 = 0.1686$
Goodness-of-fit on F ²	1.033	1.084	1.009	1.002	1.056