Supplementary Information

Facile and Simple Microwave-Assisted Synthesis Method for Mesoporous Ultrathin Iron Sulfide Nanosheets as an Efficient Bifunctional Electrocatalyst For Overall Water Splitting

Nouraiz Mushtaq¹, Wang Zhitao¹, HassinaTabassum², Muhammad Tahir¹,Zhanli Han¹,Youqi Zhu^{1*}, Waqar Younas¹, XilanMa¹,Chuanbao Cao^{1*}

¹Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China.

²Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA.

Material Characterization

X-ray diffractometry (PANalytical XRD, with Cu Ka radiation) was used for the investigation of crystallographic phase. Microstructures and morphology of samples were observed via field emission scanning electron microscopy (FESEM, JEOL JEM-2100 F) fortified with energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM, JSM- 2100F, 200 kV), and high-resolution TEM (HRTEM, FEI Tecnai G2 F20, 200 kV). Using Veeco instrument atomic force microscopy (AFM) had been performed. Brunauer-Emmett-Teller surface areas (BET) was used for investigation of the specific surface area. PHI Quanteral II (Japan) with an Al K= 280.00 eV excitation source was used for the measurements of X-ray photoelectron spectroscopy (XPS).

Electrochemical Measurements

Electrochemical work station (CHI-660E) had been utilized for HER and OER in a three electrode system. Two electrode schemes has been used for overall water splitting, and Ag/AgCl and Pt foil had obtained as reference and counter electrodes for electrochemical measurements.

In the engineering of working electrode, a water-resistant insulator mask was firmly taped on uncontaminated rectangular carbon fiber paper (CFP) (0.5 cm x 5 cm) to characterize a 3 mm diameter circular active area and 3.5 mg of Fe_3S_4 was uniformly dissolved in water/ethanol solution (1/0.880 ml) and set it on sonication for 30 minutes, 60 µl of Nafion solution (Sigma Aldrich, 5wt%) were uniformly mixed and sonicated for 30 min. After that, catalytic electrode had been made through drop wise 4µl of the slurry on CFP and desiccated it at room temperature. Reversible Hydrogen Electrode used as a standard for all potentials as follows:

E(RHE) = E(Ag/AgCl) + 0.059 pH + Eo

Overall water electrolyzer is prepared with 7μ l of the ink had been coated on 0.05 cm × 1 cm active area of CFP electrode, earlier than testing dried out at room temperature.

Proposed reaction mechanism for OER

 $MX+OH^{-} \longrightarrow MOOH+OX^{-}$ $MOOH+OH^{-} \longrightarrow MO(OH)_{2}+e^{-}$ $M(OH)_{2}+OH^{-} \longrightarrow [MO(OH)_{2}]^{+}+e^{-}$ $[M(OH)_{2}]^{+}+2OH^{-} \longrightarrow [MO]^{+}+O_{2}+2H_{2}O+2e^{-}$ $[MO]^{+}+OH^{-} \longrightarrow MOOH$

Here M is considered for Fe and X is considering for S.

Figure S1.(a) Nyquist Plots of Pt/C and Fe₃S₄, (b) Nyquist Plots of RuO_2 and Fe_3S_4

Table S1.Comparison of the HER performances of Fe ₃ S ₄ with the best-reported iron sulfde and	d
other reported non-precious HER electrocatalysts.	

Catalyst	Morphology	Electrolyte	Over	Tafel Slope	Ref.
			potential	$(mV dec^{-1})$	
			(η10)(mV)		
Fe ₃ S ₄	Nanosheets	1 M KOH	103	95	This work
FeS ₂ /C/NF	Nanoparticles	1 M KOH	202	98	1
Fe@FeO _x S _y FeS ₂	Nanoparticles	1 M KOH	243 (ŋ100)	77	2
FeS ₂ -rGO	Nanoparticles	0.5 M	139	66	3
		H_2SO_4			
FeS ₂ -RGO	Lemellar Structure	0.5 M	226	61	4
		H_2SO_4			
FeNi _{0.20} S ₂	Nanosheet	0.5 M	183	78.63	5
		H_2SO_4			
FeS ₂ -doped Mo S ₂	Nanoflower	0.5 M	136	82	6
		H_2SO_4			
Fe ₃ S ₄	Particles	1 M KOH	279 (ŋ50)	87.40	7
Fe _{0.9} Co _{0.1} S ₂ /CNT	Nanosheet	0.5 M	120(η20)	46	8
		H_2SO_4			
CoNi ₂ S ₄ @CoS ₂ /NF	Microspheres	1 M KOH	173	45	9

NiCo ₂ S ₄	Nanoparticles	1 M KOH	282	-	10
Co ₉ S ₈	Naonowires	1 M KOH	217	110	11
N-Ni ₃ S ₂ /NF	Naonowires	1 M KOH	105	108	12
CoS ₂	Nanospheres	1 M KOH	193	100	13
Co ₃ S ₄ -L	Nanosheet	1 M KOH	270	124.5	14
Co(OH) ₂ /NiCoS	Nanotubes	1 M KOH	148	88	15
Ni-S-B	Microspheres	30%wt	240	121.2	16
		KOH			
N-Ni ₃ S ₂ @C/NF	Nanoflakes	1 M KOH	113	90	17
NiS ₂	Nanospheres	1 M KOH	147	105	18
CoS _x	Nanosheets	1M KOH	127	123	19
NiSe ₂	Nanosheets	1M KOH	184	184	20
Co ₉ S ₈ @MoS ₂	Octahedrons/CNFs	1M KOH	190	110	21
СоР	Nanowires/CC	1M KOH	110	129	22
Ni ₂ P	Nanosheets	1M KOH	96	94	23
MoS ₂	Film	0.5M H ₂ SO ₄	260	50	24
WS ₂	Nanosheets	$0.5M H_2SO_4$	250	60	25

Table S2. Comparison of the OER performances of $Fe3S_4$ with the best-reported iron sulfide and

other reported	non-precious	OER of	electrocatalysts.
1	1		2

Catalyst	Morphology	Electrolyte	Over	Tafel	Ref.
			potential	Slope	
			(η10) mV	(mV dec-	
				1)	
Fe ₃ S ₄	Nanosheet	1 M KOH	230	50	This
					work
FeS ₂ /C/NF	Nanoparticles	1 M KOH	240	92	26
Fe@FeO _x S _y	Nanosheet	1 M KOH	238	82.7	27
Fe ₃ S ₄	Particles	1 M KOH	255(η50)	46	7

FeNiS ₂	Nanosheet	0.1 M KOH	310	46	9
CoNi ₂ S ₄ @CoS ₂ /NF	Peapod	1 M KOH	173	51	11
Co ₉ S ₈	Naonowires	1 М КОН	299	67	13
CoS ₂	Nanospheres	1 М КОН	290	57	14
Co ₃ S ₄ -L	Nanosheet	1 М КОН	350	84.7	15
Co(OH) ₂ /NiCoS	Nanotubes	1 М КОН	300	64	17
N-Ni ₃ S ₂ @C/NF	Nanoflakes	1 М КОН	310(η100)	75	28
NiS ₂	Nanospheres	1 М КОН	271	65	29
Ni/NiS/NC	Nanoparticles	1 М КОН	310	75	30
CoS	Thin Film	1 М КОН	300	57	31
CoS/CNT	Flower	1 М КОН	330	142	32
Co ₉ S ₈	Nanosheets	1М КОН	288	79	33
СоР	Film	1М КОН	345	47	34
Ni ₂ P	Nanosheets	1М КОН	255	57	23
NiMnCoS@rGO	Nanoparticles@sheets	1М КОН	320	53	35
СоР	Nanosheets	1М КОН	265	63	36

Material	Morphology	Electrolyte	E at j= 10 mA	Ref.
			cm ⁻² (V)	
Fe ₃ S ₄	Nanosheet	1 M KOH	1.43	This work
FeS ₂ /C/NF	Nanoparticles	1 M KOH	1.72	26
Fe@FeO _x S _y	Nanosheet	1 M KOH	1.65	2
Fe ₃ S ₄	Crumbled sheets	1 M KOH	1.68	9
Co ₉ S ₈	Naonowires	1 M KOH	1.66	14
CoS ₂	Nanospheres	1 M KOH	1.68	15
Co ₃ S ₄ -L	Nanosheet	1 M KOH	1.63	17
Co(OH) ₂ /NiCoS	Nanotubes	1 M KOH	1.62	15
N-Ni ₃ S ₂ @C/NF	Nanoflakes	1 M KOH	1.57	29
NiS ₂	Nanospheres	1 M KOH	1.66	18
Ni/NiS/NC	Nanoparticles	1 M KOH	1.61	31
NiCoP	Hollow	1 M KOH	1.62	37
	nanobricks			
Ni ₂ P	Nanosheets	1 M KOH	1.47	23
CuO@Ni/NiFe(OH) ₂	Nanoarrays	1 M KOH	1.73	38
CoP/NF	Crystalline	1 M KOH	1.65	39
	nanomaterial			

CoFeZrO	Nanosheet	1 M KOH	1.63	40
Co ₉ S ₈	Nanosheets	1М КОН	1.55	19

Reference

1. E.L. Miller, B. Marsen, B. Cole and M. Lum, ECS-State Letters, 2006, 9, G248-G250.

2. X. Zou, Y. Wu, Y. Liu, D. Liu, W. Li, L. Gu, H. Liu, P. Wang, L. Sun and Y. Zhang, *Chem*, 2018, 4, 1139-1152.

3. Y. Chen, S. Xu, Y. Li, R.J. Jacob, Y. Kuang, B. Liu, Y. Wang, G. Pastel, L.G. Salamanca - Riba and M.R. Zachariah, *Adv. Energy Mater.*, 2019, **7**, 1700482.

4. J. Jiang, L. Zhu, H. Chen, Y. Sun, W. Qian, H. Lin and S. Han, J. Mater. Sci.. 2019, 54, 1422-1433.

5. J. Jiang, L. Zhu, H. Chen, Y. Sun, H. Lin and S. Han, J. Alloys and Compd., 2019, 775, 1293-1300.

6. X. Zhao, X. Ma, Q. Lu, Q. Li, C. Han, Z. Xing and X. Yang, *Electrochim. Acta*, 2017, **249**, 72-78.

7. S. Shit, W. Jang, S. Bolar, N.C. Murmu, H. Koo and T. Kuila, *ChemElectroChem*, 2019, **6**, 3199-3208.

8. D.-Y. Wang, M. Gong, H.-L. Chou, C.-J. Pan, H.-A. Chen, Y. Wu, M.-C. Lin, M. Guan, J. Yang and C.-W. Chen, *J. Am. Chem. Soc.*, 2015, **137**, 1587-1592.

9. R. Huang, W. Chen, Y. Zhang, Z. Huang, H. Dai, Y. Zhou, Y. Wu and X. Lv, *J. Colloid Interface Sci.*, 2019, **556**, 401-410.

10. J. Tie, J. Han, G. Diao, J. Liu, Z. Xie, G. Cheng, M. Sun and L. Yu, *Appl. Surf. Sci.*, 2018, **435**, 187-194.

11. C. Zhang, S. Bhoyate, P.K. Kahol, K. Siam, T.P. Poudel, S.R. Mishra, F. Perez, A. Gupta, G. Gupta and R.K. Gupta, *ChemNanoMat.*, 2018, **4**, 1240-1246.

12. F. Yu, H. Yao, B. Wang, K. Zhang, Z. Zhang, L. Xie, J. Hao, B. Mao, H. Shen and W. Shi, *Dalton Trans.*, 2018, **47**, 9871-9876.

13. X. Ma, W. Zhang, Y. Deng, C. Zhong, W. Hu and X. Han, *Nanoscale*, 2018, **10**, 4816-4824.

14. M. Zhu, Z. Zhang, H. Zhang, H. Zhang, X. Zhang, L. Zhang and S. Wang, *J. Colloid Interface Sci.*, 2018, **509**, 522-528.

15. F. Wu, X. Guo, G. Hao, Y. Hu and W. Jiang, J. Solid State Electr., 2019, 23, 2627-2637.

16 Y. Wu, Y. Gao, H. He and P. Zhang, Appl. Surf. Sci., 2019, 480, 689-696.

17. Q. Hao, S. Li, H. Liu, J. Mao, Y. Li, C. Liu, J. Zhang and C. Tang, *Catal. Sci. Technol.*, 2019, **9**, 3099-3108.

18. X. Shi, X. Ling, L. Li, C. Zhong, Y. Deng, X. Han and W. Hu, J. Mater. Chem., 2019, 7, 23787-23793.

19. R. Souleymen, Z. Wang, C. Qiao, M. Naveed and C. Cao, J. Mater. Chem., 2018, 6, 7592-7607.

20. J. Tian, Q. Liu, A.M. Asiri and X. Sun, J. Am. Chem. Soc., 2014, 136, 7587-7590.

21. N. Jiang, Q. Tang, M. Sheng, B. You, D.-e. Jiang and Y. Sun, Catal. Sci. Technol., 2016, 6, 1077-1084.

22. H.-W. Liang, S. Brüller, R. Dong, J. Zhang, X. Feng and K. Müllen, Nat. Commun., 2015, 6, 7992.

23. N. Mushtaq, C. Qiao, H. Tabassum, M. Naveed, M. Tahir, Y. Zhu, M. Naeem, W. Younas and C. Cao, *Sustain. Energy Fuels*, 2020, **4**, 5294-5300.

24. M.-R. Gao, J.-X. Liang, Y.-R. Zheng, Y.-F. Xu, J. Jiang, Q. Gao, J. Li and S.-H. Yu, *Nat. Commun.*, 2015, **6**, 1-7.

25. J. Huang, Y. Sun, Y. Zhang, G. Zou, C. Yan, S. Cong, T. Lei, X. Dai, J. Guo and R. Lu, *Adv. Mater.*, 2018, **30**, 1705045.

26. Z. Li, M. Xiao, Y. Zhou, D. Zhang, H. Wang, X. Liu, D. Wang and W. Wang, *Dalton Trans.*, 2018, **47**, 14917-14923.

27. J. Jiang, S. Lu, H. Gao, X. Zhang and H.-Q. Yu, Nano Energy, 2016, 27, 526-534.

28. J. Ding, S. Ji, H. Wang, H. Gai, F. Liu, V. Linkov and R. Wang, Int. J. Hydrog. Energy, 2019, 44, 2832-2840.

29. S.B. Kale, A.C. Lokhande, R.B. Pujari and C.D. Lokhande, J. Colloid Interface Sci., 2018, 532, 491-499.

30. K. Prabakaran, M. Lokanathan and B. Kakade, Appl. Surf. Sci., 2019, 466, 830-836.

31. F. Song and X. Hu, Nat. Commun., 2014, 5, 1-9.

32. M. Chauhan, K.P. Reddy, C.S. Gopinath and S. Deka, ACS Catal., 2017, 7, 5871-5879.

33. R. Miao, J. He, S. Sahoo, Z. Luo, W. Zhong, S.-Y. Chen, C. Guild, T. Jafari, B. Dutta and S.A. Cetegen, ACS Catal., 2017, **7**, 819-832.

34. J. Li, J. Li, X. Zhou, Z. Xia, W. Gao, Y. Ma and Y. Qu, ACS Appl. Mater. Interfaces, 2016, 8, 10826-10834.

35. S. Rafai, C. Qiao, Z. Wang, C. Cao, T. Mahmood, M. Naveed, W. Younas and S. Khalid, *ChemElectroChem*, 2019, **6**, 5469-5478.

36. E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu and X.W.D. Lou, *Energy Environ. Sci.*, 2018, **11**, 872-880.

37. S. Li, X. Wang, M. Li, J. Liu, C. Li, H. Wu, D. Guo, F. Ye, S. Wang and L. Cheng, *Electrochim. Acta*, 2019, **319**, 561-568.

38, Y. Liu, Z. Jin, X. Tian, X. Li, Q. Zhao and D. Xiao, *Electrochim. Acta*, 2019, **318**, 695-702.

39. R. Beltrán-Suito, P.W. Menezes and M. Driess, J. Mater. Chem., 2019, 7, 15749-15756.

40. L. Huang, D. Chen, G. Luo, Y.R. Lu, C. Chen, Y. Zou, C.L. Dong, Y. Li and S. Wang, *Adv. Mater.*, 2019. **31**, 1901439.