Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Supplementary information

Unusual Slow Magnetic Relaxation in a Mononuclear Copper(II) Complex Dušan Valigura, Cyril Rajnák,* Ján Titiš, Ján Moncoľ, Alina Bieńko, Roman Boča

Preparation of complex [CuLL'₂(H₂O)], **1**, where L = 2,6-dimethanolpyridine, L' = 3,5-dinitrocarboxylate(1-), is based upon following recipe. A solution of copper(II) acetate dissolved in 20 ml of water and poured to 20 ml of aqueous solution of 2,6-pyridinedimethanol (1 mmol) and 2 mmol of 3,5-dinitrobenzoic acid was added to the reaction mixture under stirring at laboratory temperature until color stabilization and left to crystallize. The green crystals, formed within 4 weeks, were filtered, washed with small amount of water and dried in air at ambient temperature. Anal Calc for**1**: N, 10.89; C, 39.23; H, 2.66. Found: N, 10.60; C, 40.67; H, 2.92 %.

CHNS analyzer (Thermo Scientific, Flash 2000) was used for elemental analysis (EA). For FT-IR (ATR) spectra freshly grown crystals were used. The UV/Vis absorption spectra in the range 190 – 1100 nm were measured at room temperature in the Nujol suspension (Analytical Jena, Specord 250 Plus). Commercial desktop EPR spectrometer was used (ESR-5000, Margitech/Bruker) in taking the X-band powder EPR spectra at the room temperature.

Figure S1. FT-IR spectrum of 1.

Figure S2. UV/Vis spectrum of 1, band maximum at 14276 cm⁻¹. Calculated d-d transitions – bars.

In octahedral Cu(II) complexes the ground electronic term is ${}^{2}E_{g}$, which is, however, a hypothetical case, since Jahn-Teller (JT) effect applies causing tetragonal and/or rhombic distortions. In the studied Cu(II) complex, SA-CAS[9,5]/NEVPT2 calculated first excited term lies at ~10 508 cm⁻¹ (${}^{2}B_{1g} \rightarrow {}^{2}A_{1g}$ in D_{4h}) as a consequence of the strong JT splitting. The remaining transitions are predicted at 12544, 14517, and 15524 cm⁻¹.

Figure S3. X-band (9.4457 GHz) EPR spectrum of 1 at room temperature. Simulation for a mononuclear species with S = 1/2: $g\{2.050(1), 2.083(1), 2.347(3)\}$.

Figure S4. Powder diffraction patterns for 1.

	1	1'
Empirical formula	C ₂₁ H ₁₇ CuN ₅ O ₁₅	C ₂₁ H ₁₇ CuN ₅ O ₁₅
Formula weight /g mol ⁻¹	642.93	642.93
Crystal system	monoclinic	monoclinic
Space group	C2/c	C2/c
Temperature /K	100	295
Crystal size /mm	0.26 imes 0.03 imes 0.02	0.56 imes 0.37 imes 0.18
Z	4	4
<i>a</i> / Å	21.1052(11)	21.1547(4)
b / Å	13.4854(4)	13.7108(3)
<i>c</i> / Å	8.4582(4)	8.5157(1)
$\alpha /^{\circ}$	90	90
β /°	90.366(4)	90.397(1)
y /°	90	90
V/Å ³	2407.26(18)	2469.90(8)
$\rho_{\rm calc}/{\rm g~cm^{-3}}$	1.774	1.729
μ /mm ⁻¹	2.126	0.970
F(000)	1208.0	1308.0
Radiation	$CuK\alpha$ ($\lambda = 1.54186$)	MoK α ($\lambda = 0.71069$)
2Θ range for data collection/°	7.78 to 143.594	6.498 to 59.184
Index ranges	$-18 \le h \le 25, -16 \le k \le 13, -7$	$-29 \le h \le 29, -18 \le k \le 18, -$
	$\leq l \leq 10$	$11 \le l \le 11$
Data/restraints/parameters	2319/6/ <mark>196</mark>	<mark>3303</mark> /6/ <mark>197</mark>
Goodness-of-fit on F^2	<mark>1.057</mark>	<mark>1.073</mark>
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0292, wR_2 = 0.0795$	$R_1 = 0.0324, wR_2 = 0.0857$
R indices (all data)	$R_1 = 0.0360, wR_2 = 0.0818$	$R_1 = 0.0523, wR_2 = 0.0945$
color	blue	blue
CCDC No.	2065544	2065545

 Table S1. Crystal data and structure refinement for 1.

Figure S5. A more detailed view to the intermolecular π - π stacking in 1 (top) and view of the supramolecular chain formed through π - π stacking interactions [centroid-centroid distance: 3.601 Å, shift distance: 1.144 Å] (bottom).

Figure S6. View of the three-dimensional Hirshfeld surface of 1 plotted over d_{norm} in the range -0.7248 to 1.3175 a.u. Red spots show close contacts.

Figure S7. View of the three-dimensional Hirshfeld surface of 1 plotted over shape index showing π - π stacking interactions.

Figure S8. The full two-dimensional fingerprint plots of 1 (at 100K), showing (*a*) all interactions, and delineated into (*b*) H···O/O···H, (*c*) H···C/C···H, (*d*) H···H, (*e*) C···C, and (*f*) C···O/O···C interactions. The d_i and d_e values are the closest internal and external distances from given on the Hirshfeld surface contacts.

Figure S9. The full two-dimensional fingerprint plots of 1 (at 295K), showing (*a*) all interactions, and delineated into (*b*) H···O/O···H, (*c*) H···C/C···H, (*d*) H···H, (*e*) C···C, and (*f*) C···O/O···C interactions. The d_i and d_e values are the closest internal and external distances from given on the Hirshfeld surface contacts.

Fig. S11. Molecular structure of 1 along with the visualization of the calculated g-tensor componets in the crystallographic molecular frame.

Figure S12. DC magnetic data.

Figure S13. Temperature evolution of the AC susceptibility for 1.

Figure S14. Cole-Cole plots for 1 showing an asymmetry due to merged two arcs.

Figure S15. Decomposition of the Cole-Cole plots for 1 to two relaxation channels.