Supplementary information
Unusual Slow Magnetic Relaxation in a Mononuclear Copper(II) Complex

Preparation of complex $\left[\mathrm{CuLL}^{\prime}{ }_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, $\mathbf{1}$, where $\mathrm{L}=2,6$-dimethanolpyridine, $\mathrm{L}^{\prime}=3,5$-dinitrocarboxylate $(1-)$, is based upon following recipe. A solution of copper(II) acetate dissolved in 20 ml of water and poured to 20 ml of aqueous solution of 2,6-pyridinedimethanol (1 mmol) and 2 mmol of 3,5 -dinitrobenzoic acid was added to the reaction mixture under stirring at laboratory temperature until color stabilization and left to crystallize. The green crystals, formed within 4 weeks, were filtered, washed with small amount of water and dried in air at ambient temperature. Anal Calc for1: N, 10.89; C, 39.23; H, 2.66. Found: N, 10.60; C, 40.67; H, 2.92 \%.

CHNS analyzer (Thermo Scientific, Flash 2000) was used for elemental analysis (EA). For FT-IR (ATR) spectra freshly grown crystals were used. The UV/Vis absorption spectra in the range $190-1100 \mathrm{~nm}$ were measured at room temperature in the Nujol suspension (Analytical Jena, Specord 250 Plus). Commercial desktop EPR spectrometer was used (ESR-5000, Margitech/Bruker) in taking the X-band powder EPR spectra at the room temperature.

Figure S1. FT-IR spectrum of $\mathbf{1}$.

Figure S2. UV/Vis spectrum of 1, band maximum at $14276 \mathrm{~cm}^{-1}$. Calculated d-d transitions - bars.
In octahedral $\mathrm{Cu}(\mathrm{II})$ complexes the ground electronic term is ${ }^{2} \mathrm{E}_{\mathrm{g}}$, which is, however, a hypothetical case, since Jahn-Teller (JT) effect applies causing tetragonal and/or rhombic distortions. In the studied $\mathrm{Cu}(\mathrm{II})$ complex, SACAS[9,5]/NEVPT2 calculated first excited term lies at $\sim 10508 \mathrm{~cm}^{-1}\left({ }^{2} \mathrm{~B}_{1 \mathrm{~g}} \rightarrow{ }^{2} \mathrm{~A}_{1 \mathrm{~g}}\right.$ in $\left.\mathrm{D}_{4 \mathrm{~h}}\right)$ as a consequence of the strong JT splitting. The remaining transitions are predicted at 12544,14517 , and $15524 \mathrm{~cm}^{-1}$.

Figure S3. X-band (9.4457 GHz) EPR spectrum of $\mathbf{1}$ at room temperature. Simulation for a mononuclear species with $S=1 / 2: \boldsymbol{g}\{2.050(1), 2.083(1), 2.347(3)\}$.

Figure S4. Powder diffraction patterns for $\mathbf{1}$.

Table S1. Crystal data and structure refinement for 1.

	$\mathbf{1}$	$\mathbf{1}$
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{CuN}_{5} \mathrm{O}_{15}$	$\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{CuN}_{5} \mathrm{O}_{15}$
Formula weight $/ \mathrm{g}$ mol $^{-1}$	642.93	642.93
Crystal system	monoclinic	monoclinic
Space group	$C 2 / \mathrm{c}$	$C 2 / \mathrm{c}$
Temperature $/ \mathrm{K}$	100	295
Crystal size $/ \mathrm{mm}$	$0.26 \times 0.03 \times 0.02$	$0.56 \times 0.37 \times 0.18$
Z	4	4
a / \AA	$21.1052(11)$	$21.1547(4)$
b / \AA	$13.4854(4)$	$13.7108(3)$
c / \AA	$8.4582(4)$	$8.5157(1)$
$\alpha /{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	$90.366(4)$	$90.397(1)$
$\gamma /{ }^{\circ}$	90	90
V / \AA^{3}	$2407.26(18)$	$2469.90(8)$
$\rho_{\text {calc }} / \mathrm{g}$ cm	1.729	
μ / mm^{-1}	1.774	0.970
$F(000)$	2.126	1308.0
Radiation	1208.0	$\mathrm{MoK} \alpha(\lambda=0.71069)$
2Θ range for data collection $/{ }^{\circ}$	$\mathrm{CuK} \alpha(\lambda=1.54186)$	6.498 to 59.184
Index ranges	7.78 to 143.594	$-29 \leq \mathrm{h} \leq 29,-18 \leq \mathrm{k} \leq 18,-$
	$-18 \leq \mathrm{h} \leq 25,-16 \leq \mathrm{k} \leq 13,-7$	$11 \leq 1 \leq 11$
Data/restraints $/ \mathrm{parameters}$	$\leq 1 \leq 10$	$3303 / 6 / 197$
Goodness-of-fit on F^{2}	$2319 / 6 / 196$	1.073
Final R indexes $[I>=2 \sigma(\mathrm{I})]$	1.057	
R indices (all data)	$\mathrm{R}_{1}=0.0292, \mathrm{wR}_{2}=0.0795$	$\mathrm{R}_{1}=0.0324, \mathrm{wR}_{2}=0.0857$
color	$\mathrm{R}_{1}=0.0360, \mathrm{wR}_{2}=0.0818$	$\mathrm{R}_{1}=0.0523, \mathrm{wR}_{2}=0.0945$
CCDC No.	blue	blue
	2065544	2065545

Figure S5. A more detailed view to the intermolecular $\pi-\pi$ stacking in $\mathbf{1}$ (top) and view of the supramolecular chain formed through $\pi-\pi$ stacking interactions [centroid-centroid distance: $3.601 \AA$, shift distance: $1.144 \AA$] (bottom).

Figure S6. View of the three-dimensional Hirshfeld surface of $\mathbf{1}$ plotted over $d_{\text {norm }}$ in the range -0.7248 to 1.3175 a.u. Red spots show close contacts.

Figure S7. View of the three-dimensional Hirshfeld surface of $\mathbf{1}$ plotted over shape index showing $\pi-\pi$ stacking interactions.

Figure S8. The full two-dimensional fingerprint plots of $\mathbf{1}$ (at 100 K), showing (a) all interactions, and delineated into (b) $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H},(c) \mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H},(d) \mathrm{H} \cdots \mathrm{H}$, (e) $\mathrm{C} \cdots \mathrm{C}$, and $(f) \mathrm{C} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{C}$ interactions. The d_{i} and d_{e} values are the closest internal and external distances from given on the Hirshfeld surface contacts.

Figure S9. The full two-dimensional fingerprint plots of $\mathbf{1}$ (at 295K), showing (a) all interactions, and delineated into (b) $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H},(c) \mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H},(d) \mathrm{H} \cdots \mathrm{H},(e) \mathrm{C} \cdots \mathrm{C}$, and $(f) \mathrm{C} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{C}$ interactions. The d_{i} and d_{e} values are the closest internal and external distances from given on the Hirshfeld surface contacts.

Figure S10. Model dimers for DFT calculations.

Fig. S11. Molecular structure of 1 along with the visualization of the calculated g-tensor componets in the crystallographic molecular frame.

Figure S12. DC magnetic data.

Figure S13. Temperature evolution of the AC susceptibility for $\mathbf{1 .}$

Figure S14. Cole-Cole plots for $\mathbf{1}$ showing an asymmetry due to merged two arcs.

Figure S15. Decomposition of the Cole-Cole plots for $\mathbf{1}$ to two relaxation channels.

