Supporting information

Porous MoS₂ nanosheets for the fast decomposition of energetic compounds

Xu Zhao, ¹ Jianhu Zhang, ¹ Feiyan Gong, ¹ Bin Huang*, ² Zhijian Yang^{1*}

¹ Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, P. R. of China. Email: <u>zhijianyang@caep.cn</u>

² College of Chemistry and Bioengineering, Guilin University of Technology, Guilin,
541004, China. Email: <u>bin@glut.edu.cn</u>

Figure S1. XPS total survey of $pMoS_2$ (red line) and $bMoS_2$ (black line).

Figure S2. Low-magnification TEM image of bMoS₂, showing a dense structure.

Figure S3. Nitrogen sorption isotherm of bulk and porous MoS₂.

Figure S4. SEM images of NTO and TKX-50 with 5% MoS₂ addictive in bulk and

porous form.

Figure S5. The DSC curves of NTO complexed with various mass loading pMoS₂.

Figure S6. The TG curves of NTO complexed with pMoS₂ and bMoS₂.

Figure S7. DSC curves of TKX-50 with various pMoS₂ loading.

Figure S8. The TG curves of TKX-50 complexed with pMoS₂ and bMoS₂.

Figure S9. DSC curves of pMoS₂ compared with that of pMoS₂@NTO and

pMoS₂@TKX-50.

Figure S10. DSC curves of (a) raw NTO, (b) bMoS₂@NTO, (c) raw TKX-50 and (d)

bMoS₂@TKX-50.