Supplementary Material

Gd^{III} and Ga^{III} complexes with a new tris-3,4-HOPO ligand towards new imaging probes: complex stability, magnetic properties and biodistribution

Silvia Chaves,^a Karolina Gwizdała,^{a,b} Karam Chand,^a Lurdes Gano,^c Agnès Pallier,^d Éva Tóth^d and M. Amélia Santos^{*,a}

Equations used for the analysis of the ¹⁷O NMR and NMRD dataⁱ

(a) ¹⁷O NMR spectroscopy

From the measured ¹⁷O NMR relaxation rates of the paramagnetic solutions, $1/T_2$ and ω , and from the acidified water reference, $1/T_{2A}$ and ω_A , it is possible to calculate the reduced relaxation rates, $1/T_{2r}$ (Equation S1), where $1/T_{2m}$ is the relaxation rate of the bound water and $\Delta \omega_m$ is the chemical shift difference between bound and bulk water, τ_m is the mean residence time or the inverse of the water exchange rate k_{ex} and P_m is the mole fraction of the bound water.

$$\frac{1}{T_{2r}} = \frac{1}{P_m} \left[\frac{1}{T_2} - \frac{1}{T_{2A}} \right] = \frac{1}{\tau_m} \frac{T_{2m}^{-2} + \tau_m^{-1} T_{2m}^{-1} + \Delta \omega_m^2}{(\tau_m^{-1} + T_{2m}^{-1})^2 + \Delta \omega_m^2} + \frac{1}{T_{2os}}$$
[S1]

The outer sphere contribution to the ¹⁷O relaxation rates $1/T_{2OS}$ can be neglected and equation S1 can be further simplified into Equation S2:

$$\frac{1}{T_{2r}} = \frac{l}{T_{2m} + \tau_m}$$
[S2]

The exchange rate is assumed to be described by the Eyring equation (Equation S3), where ΔS^{\ddagger} and ΔH^{\ddagger} are the entropy and enthalpy of activation for the water exchange process, and k_{ex}^{298} is the exchange rate at 298.15 K. R is the usual gas constant whereas h and k_B are the Planck and Boltzmann constants, respectively:

^{a.} Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal.

^{b.} Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland.

^{c.} Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.

^{d.} Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, France.

$$\frac{1}{\tau_m} = k_{ex} = \frac{k_B T}{h} exp\left\{\frac{\Delta S^{\ddagger}}{R} - \frac{\Delta H^{\ddagger}}{RT}\right\} = \frac{k_{ex}^{298} T}{298.15} exp\left\{\frac{\Delta H^{\ddagger}}{R} \left(\frac{1}{298.15} - \frac{1}{T}\right)\right\}$$
[S3]

In the transverse relaxation the scalar contribution, $1/T_{2sc}$, is the most important. In Equation S4, A/\hbar is the scalar coupling constant and $1/\tau_{si}$ is the sum of the exchange rate and the electron spin relaxation rate constants (Equation S5).

$$\frac{1}{T_{2m}} \approx \frac{1}{T_{2sc}} = \frac{S(S+1)}{3} \left(\frac{A}{h}\right)^2 \left(\tau_{s1} + \frac{\tau_{s2}}{1 + \omega_S^2 \tau_{s2}^2}\right)$$
[S4]
$$\frac{1}{\tau_{si}} = \frac{1}{\tau_m} + \frac{1}{T_{ie}}$$
[S5]

The longitudinal and transverse electronic relaxation rates, $1/T_{1e}$ and $1/T_{2e}$ are expressed by Equations S6-S7, where τ_V is the correlation time for the modulation of the zero-field-splitting interaction, E_V the corresponding activation energy and Δ^2 is the mean square zero-field-splitting energy. We assumed a simple exponential dependence of τ_V versus 1/T.

$$\left(\frac{1}{T_{1e}}\right)^{ZFS} = \frac{1}{25}\Delta^2 \tau_v \left\{ 4S(S+1) - 3 \right\} \left\{ \frac{1}{1 + \omega_S^2 \tau_v^2} + \frac{4}{1 + 4\omega_S^2 \tau_v^2} \right\}$$
[S6]

$$\left(\frac{1}{T_{2e}}\right)^{ZFS} = \Delta^2 \tau_{\nu} \left(\frac{5.26}{1 + 0.372\omega_S^2 \tau_{\nu}^2} + \frac{7.18}{1 + 1.24\omega_S \tau_{\nu}}\right)$$
[S7]

$$\tau_{v} = \tau_{v}^{298} \exp\left\{\frac{E_{v}}{R} \left(\frac{1}{T} - \frac{1}{298.15}\right)\right\}$$
[S8]

(b) ¹H NMRD

The measured longitudinal proton relaxation rate, R_I^{obs} , is the sum of the paramagnetic and diamagnetic contributions as expressed in Eq. S9, where r_I is the proton relaxivity:

$$R_{1}^{obs} = R_{1}^{d} + R_{1}^{p} = R_{1}^{d} + r_{1} \times c_{Gd}$$
[S9]

The relaxivity can be divided into terms of inner and outer sphere, as follows:

$$r_l = r_{lis} + r_{los}$$
 [S10]

The inner sphere term is obtained in Equation S11, where q is the number of inner sphere water molecules.

$$r_{lis} = \frac{1}{1000} \times \frac{q}{55.55} \times \frac{1}{T_{lm}^H + \tau_m}$$
[S11]

The longitudinal relaxation rate of inner sphere protons, $1/T_{Im}^{H}$ is expressed by Equation S12, where r_{GdH} is the effective distance between the electron charge and the ¹H nucleus, ω_{I} is the proton resonance frequency and ω_{S} is the Larmor frequency of the Gd^{III} electron spin. The correlation time, τ_{d} , is dependent on the water residence time, τ_{m} , the electron spin relaxation times, T_{ie} , and the rotational correlation time, τ_{R} .

$$\frac{1}{T_{1m}^{H}} = \frac{2}{15} \left(\frac{\mu_0}{4\pi}\right)^2 \frac{h^2 \gamma_I^2 \gamma_S^2}{r_{GdH}^6} S(S+1) \times \left[3J(\omega_I;\tau_{d1}) + 7J(\omega_S;\tau_{d2})\right]$$
[S12]

For slowly rotating species, the spectral density functions are described the Lipari-Szabo approach.ⁱⁱ In this model we distinguish two statistically independent motions; a rapid local motion with a correlation time τ_l and a slower global motion with a correlation time τ_g . Supposing the global molecular reorientation is isotropic, the relevant spectral density functions are expressed as in Equations (S13-S17), where the general order parameter S^2 describes the degree of spatial restriction of the local motion. If the local motion is isotropic, $S^2 = 0$; if the rotational dynamics is only governed by the global motion, $S^2 = 1$.

$$J(\omega_{I};\tau_{d1}) = \left(\frac{S^{2}\tau_{d1g}}{1+\omega_{I}^{2}\tau_{d1g}^{2}} + \frac{(1-S^{2})\tau_{d1}}{1+\omega_{I}^{2}\tau_{d1}^{2}}\right)$$
(S13)

$$J(\omega_{S};\tau_{d2}) = \left(\frac{S^{2}\tau_{d2g}}{1+\omega_{S}^{2}\tau_{d2g}^{2}} + \frac{(1-S^{2})\tau_{d2}}{1+\omega_{S}^{2}\tau_{d2}^{2}}\right)$$
(S14)

$$\frac{1}{\tau_{dig}} = \frac{1}{\tau_m} + \frac{1}{\tau_g} + \frac{1}{T_{ie}} \qquad i = 1, 2$$
(S15)

$$\frac{l}{\tau} = \frac{l}{\tau_g} + \frac{l}{\tau_l}$$
(S16)

$$J_{i}(\omega_{I}) = \left(\frac{S^{2}\tau_{g}}{1 + i^{2}\omega_{I}^{2}\tau_{g}^{2}} + \frac{(I - S^{2})\tau}{1 + i^{2}\omega_{I}^{2}\tau^{2}}\right) \qquad i = 1, 2$$
(S17)

The rotational correlation times, τ_g and τ_l are assumed to have simple exponential temperature dependence with an E_R activation energy as given in Equation (S18).

$$\tau_{v} = \tau_{v}^{298} \exp\left\{\frac{E_{v}}{R} \left(\frac{1}{T} - \frac{1}{298.15}\right)\right\}$$
(S18)

The outer-sphere contribution can be described by Equation S19 where N_A is the Avogadro constant, and J_{os} is its associated spectral density function.

$$r_{los} = \frac{32N_A \pi}{405} \left(\frac{\mu_0}{4\pi}\right)^2 \frac{h^2 \gamma_S^2 \gamma_I^2}{a_{GdH} D_{GdH}} S(S+1) [3J_{os}(\omega_I, T_{le}) + 7J_{os}(\omega_S, T_{2e})]$$
[S19]

$$J_{os}\left(\omega, T_{je}\right) = Re\left[\frac{1 + \frac{1}{4}\left(i\omega\tau_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right)^{1/2}}{1 + \left(i\omega\tau_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right)^{1/2} + \frac{4}{9}\left(i\omega\tau_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right) + \frac{1}{9}\left(i\omega\tau_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right)^{3/2}}\right]$$

j = 1, 2 [S20]

The diffusion coefficient for the diffusion of a water proton away from a Gd^{III} complex, D_{GdH} , is assumed to obey an exponential law versus the inverse of the temperature, with activation energy E_{GdH} , as given in Equation S21. D_{GdH}^{298} is the diffusion coefficient at 298.15 K.

$$D_{\rm GdH} = D_{\rm GdH}^{298} \exp\left\{\frac{E_{\rm GdH}}{R} \left(\frac{1}{298.15} - \frac{1}{T}\right)\right\}$$
[S21]

Figure S1. Spectrophotometric absorption spectra of the 1:1 Ga^{III}/H₃L**2** system recorded for 0.8 < pH < 6.95 ($C_L = 5.3 \times 10^{-5}$ M).

ⁱ Tóth, É.; Helm, L.; Merbach, A.E. Relaxivity of Gadolinium(III) Complexes (Chapter 2) in "The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging", 2nd edition, Eds. Merbach, A.E.; Helm L.; Tóth É., John Wiley & Sons, 2013 pp: 25-82.

ⁱⁱ Dunand, F.A.; Tóth, E.; Hollister, R., Merbach, A.E. Lipari-Szabo approach as a tool for the analysis of macromolecular gadolinium(III)-based MRI contrast agents illustrated by the [Gd(EGTA-BA-(CH₂)₁₂)]_nⁿ⁺ polymer. *J. Biol. Inorg. Chem.* **2001**, *6*, 247–255.

Figure S2. MALDI-TOF mass measurement spectrum of a solution of Ga^{III}/H_3L2 (pH= 4.18) with matrix CHCA. The group of peaks at m/z 836/838 displays an isotopic distribution pattern that agrees well with that calculated for $[Ga^{III}(C_{37}H_{48}N_7O_{11}) + H]^+$ as shown in insert a).

¹³CNMR

Figure S3. NMR plots of H_3L2 .