Supporting Information

High-efficiency counter electrodes for quantum dot-sensitized solar

cells (QDSSCs): Designing Graphene-supported CuCo₂O₄ porous hollow

microspheres with improved electron transport performance

Qiu Zhang, Tingting Zhang, Libo Wang, Fengyan Li *, Lin Xu *

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China. E-mail: lify525@nenu.edu.cn; linxu@nenu.edu.cn

1. Experimental section

1.1. Chemicals and materials

Cu(NO₃)₂·3H₂O (AR, \geq 99.5%), (NH₂)₂CO (AR, \geq 99.0%), Terpineol (C₁₀H₁₈O, AR), NH₄Cl (AR, \geq 99.0%), H₂NCSNH₂ (AR, \geq 99.0%), C₄H₆O₄Zn·2H₂O (AR, \geq 99.0%), KCl (AR, \geq 99.5%), Na₂SO₃ (AR, \geq 97.0%), ammonium hydroxide, isopropanol, glycerol, absolute methanol and acetone were purchased from Sinopharm. Na₂S·9H₂O (AR, \geq 98.0%), Co(NO₃)₂·6H₂O (AR, \geq 99%), polyvinylpyrrolidone (K30), Sulfur (S, 99.99%), Graphite powder (99.8%), Titanium oxide (TiO₂, Degussa, P25). CdCl₂ (AR, \geq 99.0%), Cd(OAc)₂ (AR, 99.0%), N(CH₂COONa)₃ (AR, 98.0%), selenium powder (Se, 200 mesh, 99.9%) were purchased from Aladdin (Sigma-Aldrich).

1.2. Characterizations

X-ray powder diffraction test was conducted from 15 to 80° adopting Siemens D5005 diffractometer with Cu target K α (λ = 1.5418 Å) rays as X-ray source. A field emission scanning electron microscope (SEM JEOL JSM 4800F) equipped with X-ray energy dispersion (EDX) analysis was used to study the surface morphology and element composition of the samples. X-ray photoelectron spectroscopy (XPS) was carried out applying an ESCALABMKII spectrometer and the X-ray source was achromatic Al-Ka (1486.6 eV). The electron transmission microscopy (TEM) and HRTEM images was received using the transmission electron microscope JEOL-2100F. The datas of nitrogen adsorption-desorption isotherms were collected from an ASAP 2020 (Micromeritics, USA). An IVIUM purchased from Tianjin Brillante Technology Limited with a filtered 500 W Xenon lamp is utilized to current-voltage (I-V) curves measurements under the condition of AM 1.5 100 mW/cm². Incident photon-tocurrent efficiency (IPCE) was received by BUNKOKEIKI CEP-2000. The EIS, Tafel, CV and open circuit voltage decay (OCVD) tests are all used CHI660D electrochemical workstation (Shanghai Chenhua, China). EIS test conditions: the frequency range is 10^{-1} - 10^{5} Hz; the amplitude is 0.01 V, which is performed under the condition of open-circuit voltage. All characterizations were conducted at ambient temperature and pressure.

Fig. S1. (a–e) EDX elemental mappings of Co (b), Cu (c), O (d), C (e) and (f) EDX image in the $CuCo_2O_4/RGO_{12}$ composite.

Fig. S2. XPS survey scan spectrum of CuCo₂O₄/RGO₁₂ composite.

Counter	J _{sc}	V _{oc}	FF	PCE	Ref.
electrode	(mA/cm²	(V)		(%)	
)				
Cu _{1.18} S-GOR	20.55	0.626	0.53	6.81	1
BCNT	17.40	0.520	0.52	4.55	2
CoSe ₂ -NC	19.65	0.540	0.48	5.06	3
g-C ₃ N ₄ /NiS	17.56	0.570	0.56	5.64	4
Cu ₂ S@SLG	3.74	0.500	0.63	3.93	5
MnCo ₂ S ₄ /CNTs	18.45	0.580	0.45	4.85	6
MoS ₂ /CNT	20.16	0.620	0.40	5.05	7
Ti/Cu ₂ S	16.31	0.570	0.44	4.11	8
alpha-MoO₃-C	1.29	0.48	0.31	1.29	9
Cu _{2-x} Se/Cu ₇ S ₄	23.02	0.517	0.36	4.38	10
CB/Cu _x S	16.96	0.584	0.567	5.62	11
RGO-Cu₂S	15.85	0.556	0.44	3.85	12
Cu ₂ ZnSnS ₄	13.40	0.730	0.67	6.19	13
Flower-like CuCo ₂ O ₄ @RGO	12.11	0.79	0.64	6.11	14
NiS-rGO	5.55	0.80	0.32	1.42	15
RGO/SnO ₂ /PANI	18.60	0.708	0.63	7.92	16
CuCo ₂ O ₄	21.83	0.60	0.47	6.19	This work
CuCo ₂ O ₄ /RGO ₁₂	22.83	0.61	0.51	7.04	This work

Table S1 Comparison of QDSSCs performance with other reported counterelectrodes.

References

1 D. Ghosh, G. Halder, A. Sahasrabudhe and S. Bhattacharyya, Nanoscale, 2016, 8, 10632.

2 W. Li, S. Zhang, Q. Chen and Q. Zhong, Catal. Sci. Technol., 2021, 11, 2745-2752.

3 W. Li, M. Zheng, Z. Tian, G. Long, S. Zhang, Q. Chen and Q. Zhong, ECS J. Solid State Sci. Tecnnol., 2021, **10**, 045012.

4 W. Li, Q. Chen and Q. Zhong, J. Mater. Sci., 2020, 55, 10712-10724.

5 E. Akman, Y. Altintas, M. Gulen, M. Yilmaz, E. Mutlugun and S. Sonmezoglu, Renew. Energ., 2020, **145**, 2192-2200.

6 W. Li, L. He, J. Zhang, B. Li, Q. Chen and Q. Zhong, J. Phys. Chem. C, 2019, **123**, 21866-21873.

7 H. Yan, Z. Qi, Q. Chen and Q. Zhong, ECS J. Solid State Sci. Technol., 2019, 8, P77-P82.

8 J. Chae, M. Oh, V. H. V. Quy, J. Kwon, J.-H. Kim, S.-H. Kang, H. Kim, E. Vijayakumar and K.-S. Ahn, Thin Solid Films, 2018, **660**, 46-53.

9 P. S. Tamboli, M. B. R. Prasad, V. S. Kadam, R. S. Vhatkar, Inamuddin; H. M. Pathan and S. S. Mahajan, Sol. Energy Mater. Sol. Cells, 2017, **161**, 96-101.

10 L. Ran and L. Yin, CrystEngComm, 2017, 19, 5640-5652.

11 I. P. Liu, H. Teng and Y.-L. Lee, J. Mater. Chem. A, 2017, 5, 23146-23157.

12 M. Ye, C. Chen, N. Zhang, X. Wen, W. Guo and C. Lin, Adv. Energy Mater., 2014, 4, 1301564.

13 Y. Li, M. Yang, Y. Huang, X. Sun, K. Liu and J. Zhang, Solid State Sci., 2021, **113**, 106547.

14 K. Xiong, W. Nie, P. Yu, L. Zhu and X. Xiao, Mater. Lett., 2017, 204, 69-72.

15 S. A. Salleh, M. Y. A. Rahman and T. H. T. Aziz, Inorg. Chem. Commun., 2022, **135**, 109086.

16 M. A. K. L. Dissanayake, J. M. K. W. Kumari, G. K. R. Senadeera and H. Anwar, Sol. Energy, 2021, **230**, 151-165.