Supplementary Information

$Ti_3C_2T_x$ (MXene)/Pt nanoparticles electrode for accurate detection of DA coexisting with AA and UA

You Xue ^a, Yapeng Zheng ^a, Enhui Wang ^a, Tao Yang ^{a,*}, Hongyang Wang ^{b,*}, Xinmei Hou ^{a,*}

^a Beijing Advanced Innovation Center for Materials Genome Engineering, Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing. Beijing 100083, China

^b State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

*Corresponding author.

Email: <u>houxinmeiustb@ustb.edu.cn</u> (Xinmei Hou)

yangtaoustb@ustb.edu.cn (Tao Yang)

wanghongyang_why@126.com (Hongyang Wang)

Fig. S1 The corresponding elemental mapping images of sample.

Fig. S2 The DPV curves of $Ti_3C_2T_x$ /PtNPs-2/GCE in 1 mM DA (a) and 1 mM UA (b) in 0.1 M PBS

with various pH.

Fig. S3 The DPV curves of 100 μ M DA in the presence of different AA (0, 20, 50, 100, 150, 200, 300 μ M)(a). The fitting plot of oxidation peak current with different concentration of AA(b).

Electrode	LOD (µM)	Linear range (µM)	Refs.
Pd Pt/RGO/GCE	0.04	4-200	1
TiN-rGO/GCE	0.159	5-175	2
Reduced graphene oxide -ZnO	1.08	3-330	3
AuNPs@GO/PPy/CFP	0.115	0.2-60	4
Screen-printed Graphene electrode	0.12	0.5-2000	5
Glass Carbon/Pt	0.03	0.03-8.1	6
Au/RGO/GCE	1.4	6.8-41	7
RGO-CNT-Au/GCE	3.3	100-320	8
Ti ₃ C ₂ T _x /GCE	0.06	0.5–50	9
Ti ₃ C ₂ T _x /PtNPs/GCE	0.48/0.38	5-180	This work

Table S1 Performances of different sensors for electrochemical detection of DA.

Sample	Initial solution	Added DA	Found DA	Calibrated DA	Recovery	RSD
	(µmol/L)	(µmol/L)	(µmol/L)	(µmol/L)	(%)	(%, n=3)
1	100 AA	20	24	19	99.1	3.7
2	100 AA	40	44	40	100.0	1.5
3	100 AA	60	65	61	101.3	2.2
4	Urine (46 AA)	20	21	20	100.0	2.7
5	Urine (58 AA)	40	41	41	103.3	2.4
6	Urine (70 AA)	60	62	61	101.4	1.9

Table S2 Determination results of DA in real sample.

- J. Yan, S. Liu, Z. Zhang, G. He, P. Zhou, H. Liang, L. Tian, X. Zhou and H. Jiang, *Colloids Surf.*, B 2013, 111, 392-397.
- J. Feng, Q. Li, J. Cai, T. Yang, J. Chen and X. Hou, Sensors and Actuators, B: Chemical, 2019, 298, 126872.
- 3 X. Zhang, Y.-C. Zhang and L.-X. Ma, Sens. Actuators, B, 2016, 227, 488-496.
- 4 C. Tan, J. Zhao, P. Sun, W. Zheng and G. Cui, New J. Chem., 2020, 44, 4916-4926.
- 5 J. Ping, J. Wu, Y. Wang and Y. Ying, Biosens. Bioelectron., 2012, 34, 70-76.
- 6 C. L. Sun, H. H. Lee, J. M. Yang and C. C. Wu, *Biosens. Bioelectron.*, 2011, 26, 3450-3455.
- C. Wang, J. Du, H. Wang, C. e. Zou, F. Jiang, P. Yang and Y. Du, Sens. Actuators, B, 2014, 204, 302-309.
- 8 S. Wang, W. Zhang, X. Zhong, Y. Chai and R. Yuan, Anal. Methods, 2015, 7, 1471-1477.
- 9 N. Murugan, R. Jerome, M. Preethika, A. Sundaramurthy and A. K. Sundramoorthy, J. Mater. Sci. Technol., 2021, 72, 122-131.