ELECTRONIC SUPPLEMENTARY INFORMATION

NIR luminescence thermometers based on Yb-Nd coordination compounds in the 83-393K temperature range

Anastasia V. Orlova^a, Vladislava Yu. Kozhevnikova^a, Leonid S. Lepnev^b, Alexander S. Goloveshkin^c and Valentina V. Utochnikova^a

- a. a. M.V. Lomonosov Moscow State University 1/3 Leninskye Gory, Moscow, 119991, Russia
- b. P.N. Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119992, Russia
- c. A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, 119991 Moscow, Russian Federation

Contents

TGA data
IR-spectroscopy4
Triplet statement measurement
EDX data6
Cycling experiment7
Thermometric parameters
Approximation of the LIR temperature dependence for Yb _{0.02} Nd _{0.12} Gd _{0.86} (ant) ₃ 9

Experimental Section

Materials and methods

All solvents and chemicals were purchased from commercial sources.

X-ray powder diffraction (XRD) measurements were performed on Bruker D8 Advance Vario diffractometers (λ (CuK α 1) = 1.54046 Å, Ge (111) monochromator, position-sensitive detector LynxEye, $\theta/2\theta$ geometry, with rotation).

Thermal analysis was carried out on a thermoanalyzer STA 449 F1 Jupiter (NETZSCH, Germany) in the temperature range of 40–1000 °C in air, heating rate 10 °/min. The evolved gases were simultaneously monitored during the TA experiment using a coupled QMS 403 Aeolos quadrupole mass spectrometer (NETZSCH, Germany). The mass spectra were registered for the species with following m/z values: 18 (corresponding to H₂O), 28 (corresponding to N₂) and 44 (corresponding to CO₂).

Elemental analysis was performed on a Carlo Erba Elemental Analyzer 1106.

The IR spectra were recorded on an Thermo Scientific[™] Nicolet[™] iS50 FTIR Spectrometer as powdered at ATR.

X-ray microanalysis was carried out on a Leo Supra 50 VP scanning electron microscope equipped with an INCA Energy + Oxford 350X-Max 80 X-ray energy dispersion spectrometer. Measurements were made for each sample both at the point and in area. **Absorption spectra** were recorded in the range 200-800 nm using Perkin-Elmer Lambda 650 spectrometers to determine the maximum absorption of the ligand, as well as to estimate the molar extinction coefficient of the ligand.

Emission spectra and lifetimes were measured using Edinburgh Instruments FLS980 Fluorescence Spectrometer equipped with 450 W Xenon lamp, diode laser ($\lambda_{ex} = 365$ nm) for spectra and nitrogen laser ($\lambda_{ex} = 337$ nm) for lifetimes and Hamamatsu R928P PMT detector.

Photoluminescence quantum yield were determined using a diode laser ($\lambda_{ex} = 365$ nm) as an excitation source with Ocean Optics Maya 2000 spectrometer upon excitation with a xenon lamp at 25 °C. According to absolute modified de Mello et al. [38] method we carried out measurements in an integration sphere and calculated it by formula (4), when (i) L_a is the integrated intensity of Rayleigh scattering band (measurement at the excitation wavelength with empty cuvette in the sphere); (ii) L_c is the same integrated intensity at the excitation wavelength when the sample is introduced into the cuvette; (iii) E_a is the integrated intensity of the entire emission spectrum of empty cuvette; (iv) E_c is the integrated intensity of the entire emission spectrum of cuvette with the sample.

$$PLQY = \frac{E_c - E_a}{L_a - L_c} \cdot 100\%$$
(4)

Synthesis of Ln(ant)₃

To a water solution of K(ant) (0.3 mmol, *in situ* from KOH and H(ant)), a water solution of $LnCl_3 \cdot 6H_2O$ (0.1 mmol; $Ln = Yb_xNd_yGd_{1-x-y}$) was added, resulting in the formation of lanthanide complex precipitate. Then the mixture was boiled for a few minutes for better crystallization, precipitate was separated by centrifugation, washed by distilled water to remove dissolvable precursors and by-products, and dried in air.

 $Nd_{0.4}Gd_{0.6}(ant)_3$. Elemental analysis (%), calcd. for $Nd_{0.4}Gd_{0.6}(C_{15}H_9O_2)_3$ (815.5): C, 66.22; H, 3.31. Found: C, 66.93; H, 3.34.

Yb_{0.2}Gd_{0.8}(ant)₃. Elemental analysis (%), calcd. for Yb_{0.2}Gd_{0.8}(C₁₅H₉O₂)₃ (823.9): C, 65.55; H, 3.28. Found: C, 65.02; H, 3.25.

Synthesis of Ln(acr)₃(H₂O)₈

To a water solution of K(acr) (0.3 mmol, *in situ* from KOH and H(acr)·H₂O), a water solution of $LnCl_3·6H_2O$ (0.1 mmol; $Ln = Yb_xNd_yGd_{1-x-y}$) was added, resulting in the formation of lanthanide complex precipitate. Then the mixture was boiled for a few minutes for better crystallization, precipitate was separated by centrifugation, washed by distilled water to remove dissolvable precursors and by-products, and dried in air.

Yb_{0.2}Gd_{0.8}(acr)₃(H₂O)₈. Elemental analysis (%), calcd. for Yb_{0.2}Gd_{0.8}(C₁₄H₈NO₂)₃(H₂O)₈ (970.4): C, 51.94; N, 4.33; H, 4.12. Found: C, 51.77; N, 4.44; H, 4.45.

 $Yb_{0.5}Gd_{0.5}(acr)_3(H_2O)_{8.}$ Elemental analysis (%), calcd. for $Yb_{0.5}Gd_{0.5}(C_{14}H_8NO_2)_3(H_2O)_8$ (906.3): C, 55.61; N, 4.63; H, 4.41. Found: C, 55.95; N, 4.61; H, 4.52.

Nd_{0.3}Gd_{0.7}(acr)₃(H₂O)₈. Elemental analysis (%), calcd. for Nd_{0.3}Gd_{0.7}(C₁₄H₈NO₂)₃(H₂O)₈ (963.4): C, 52.32; N, 4.36; H, 4.15. Found: C, 51.85; N, 4.48; H, 4.23.

Nd(acr)₃(H₂O)_{8.} Elemental analysis (%), calcd. for Nd(C₁₄H₈NO₂)₃(H₂O)₈ (954.24): C, 52.82; N, 4.40; H, 4.19. Found: C, 52.22; N, 4.35; H, 4.18.

Figure S1. TGA-data for Yb_{0.4}Gd_{0.6}(acr)₃(H₂O)_n

Figure S2. TGA-data for $Yb_{0.05}Nd_{0.45}Gd_{0.5}(acr)_3(H_2O)_n$

Figure S3. TGA-data for Nd_{0.12}Yb_{0.02}Gd_{0.86}(ant)₃

IR-spectroscopy

Figure S4. IR-spectroscopy data for Yb_{0.1}Gd_{0.9}(ant)₃

Figure S5. Luminescence spectra of $Gd(acr)_3(H_2O)_n$ at 77 and 293K

EDX data

Figure S6. EDX element mapping for a) Yb_{0.02}Nd_{0.14}Gd_{0.86}(ant)₃ b)Yb_{0.1}Nd_{0.1}Gd_{0.8} (acr)₃(H₂O)_n

Sample	Theoretical Yb fraction, %	Theoretical Nd fraction, %	Obtained Yb fraction, %	Obtained Nd fraction, %
Yb _{0.1} Gd _{0.9} (ant) ₃	10	-	10±1	-
Yb _{0.2} Gd _{0.8} (ant) ₃	20	-	21±1	-
Yb _{0.3} Gd _{0.7} (ant) ₃	30	-	32±1	-
Yb _{0.4} Gd _{0.6} (ant) ₃	40	-	41±1	-
Yb _{0.5} Gd _{0.5} (ant) ₃	50	-	52±1	-
Nd _{0.1} Gd _{0.9} (ant) ₃	-	10	-	9±1
Nd _{0.2} Gd _{0.8} (ant) ₃	-	20	-	20±1
Nd _{0.3} Gd _{0.7} (ant) ₃	-	30	-	31±1
Nd _{0.4} Gd _{0.6} (ant) ₃	-	40	-	38±1
Nd _{0.5} Gd _{0.5} (ant) ₃	-	50	-	49±1
Yb _{0.1} Gd _{0.9} (acr) ₃ (H ₂ O) _n	10	-	9±1	-
Yb _{0.2} Gd _{0.8} (acr) ₃ (H ₂ O) _n	20	-	22±1	-
$Yb_{0.3}Gd_{0.7}(acr)_3(H_2O)_n$	30	-	31±1	-
$Yb_{0.4}Gd_{0.6}(acr)_3(H_2O)_n$	40	-	39±1	-
$Yb_{0.5}Gd_{0.5}(acr)_3(H_2O)_n$	50	-	50±1	-
Nd _{0.1} Gd _{0.9} (acr) ₃ (H ₂ O) _n	-	10	-	10±1
Nd _{0.2} Gd _{0.8} (acr) ₃ (H ₂ O) _n	-	20	-	21±1
Nd _{0.3} Gd _{0.7} (acr) ₃ (H ₂ O) _n	-	30	-	30±1
$Nd_{0.4}Gd_{0.6}(acr)_3(H_2O)_n$	-	40	-	41±1
$Yb_{0.1}Nd_{0.1}Gd_{0.8}(acr)_3(H_2O)_n$	20	20	20±1	19±1
Yb _{0.02} Nd _{0.12} Gd _{0.86} (ant) ₃	2	12	2±1	11±1

Table S1. EDX data

Figure S7. LIR of $Yb_{0.02}Nd_{0.12}Gd_{0.86}(ant)_3$ for series of heating and cooling experiments up to various temperatures

Thermometric parameters

Yb _{0.02} Nd _{0.12} Gd _{0.86} (ant) ₃ at 77-293 K			
Thermometric parameter	Mathematical definition	Value	
Absolute sensitivity, S _a	$S_a = \left \frac{1}{dT} \right $	0.0055K ⁻¹	
Relative sensitivity, S _r	$S_a = \left \frac{1}{dT} \right * \frac{100\%}{LIR}$	0.5%K ⁻¹	
Temperature resolution, δT	$o_I = \frac{1}{S_a}$	4K	

Table S2. Thermometric parameters for Yb_{0.02}Nd_{0.12}Gd_{0.86}(ant)₃ at 77-293 K

Table S3. Thermometric parameters for Yb_{0.1}Nd_{0.1}Gd_{0.8}(acr)₃(H₂O)_n at 77-293 K

Yb _{0.1} Nd _{0.1} Gd _{0.8} (acr) ₃ (H ₂ O) _n at 77-293 K				
Thermometric parameter	Mathematical definition	Value		
ыыыыAbsolute sensitivity, S_a	$S_a = \left \frac{1}{dT} \right $	0.0015K ⁻¹		
Relative sensitivity, S _r	$S_a = \left \frac{1}{dT} \right * \frac{1}{LIR} * 100\%$	0.17%K ⁻¹		
Temperature resolution, δT	$oI = \frac{1}{S_a}$	15K		

Table S4. Thermometric parameters for Yb_{0.02}Nd_{0.12}Gd_{0.86}(ant)₃ at 293-393 K

Yb _{0.02} Nd _{0.12} Gd _{0.86} (ant) ₃ at 293-393 K			
Thermometric parameter	Mathematical definition	Value	
Absolute sensitivity, S_a	$S_a = \left \frac{dT}{dT} \right $	0.0022K ⁻¹	
Relative sensitivity, S _r	$S_a = \left \frac{1}{dT} \right * \frac{100\%}{LIR}$	1.8%K ⁻¹	
Temperature resolution, δT	$o_1 = \frac{1}{S_a}$	1.5K	

Approximation of the LIR temperature dependence for Yb_{0.02}Nd_{0.12}Gd_{0.86}(ant)₃

Figure S8. Theoretical LIR curve at a) 83-277K and b) 83-257K in approximation of three-level system

Figure S9. Theoretical LIR curve at 293-393K in approximation of three-level system

$$LIR = \frac{B}{1 + A \cdot exp^{(n)}(\frac{E_a}{T})}$$

Table S5. The coefficients of the equation

and R² for various temperature ranges

Temperature range	Α	В	Ea	R ²
Low temperature range (83-277 K)	8.02 ± 5.42	2.83 ± 2.50	63.23 ± 24.91	0.99307
Low temperature range without last point (83-257 K)	5.54 ± 1.06	1.74 ± 0.46	87.7 ± 19.5	0.99659
Low temperature range without last two points (83-237 K)	4.92 ± 0.57	1.50 ± 0.22	104.39 ± 18.9	0.99752
High temperature range (293-393 K)	$5.12 \pm 2.19 \cdot 10^{12}$	$11\ 023 \pm 4.73 \cdot 10^9$	$-1\ 629\pm 664$	0.95405

Figure S10. Theoretical LIR curve at 83-393K in approximation of four-level system