Supporting Information (SI):

In-situconstructionofsuperhydrophiliccrystalline Ni_3S_2 @amorphous VO_x heterostructurenanorodarraysforhydrogenevolutionreactionwithindustry-compatiblecurrentdensity

Qianqian Liu^{a,b}, Jianfeng Huang^{a,*}, Kehan Liu^b, Huiling Du^b, Le Kang^b, Dan Yang^a,

Mengfan Niu^{*a*}, Guodong Li^{*c*}, Liyun Cao^{*a*} and Liangliang Feng^{*a*,*}

^a School of Material Science and Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China.

^b College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China

^c State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.

*Corresponding author.

E-mail: huangjf@sust.edu.cn; fengll@sust.edu.cn

Fig. S1 (a) Raman spectra and (b) local magnification of CS-NC/NF and TF-NS/NF.

Fig. S2 SEM images of bare Ni foam (NF).

Fig. S3 (a, b) SEM images of TF-NS/NF.

Fig. S4 SEM images of the precursor of (a)CS-NS/NF and (b)TF-NS/NF.

Fig. S5 The STEM image of the CS-NS/NF.

Fig. S6 HER LSV curves obtained from control experiments under the different reaction time.

Fig. S7 CV curves of (a) TF-NS/NF and (b) CS-NS/NF at different scan rates.

Fig. S8 (a)HER ECSA-normalized LSV curves of CS-NS/NF and TF-NS/NF. (b) The mass normalized current density of two catalysts.

The current densities measured have been normalized by the electrochemically active

surface area (ECSA) value $\binom{j_{ECSA} = \frac{j}{ECSA}}{ECSA}$. As shown in Fig.S7, the CS-NS/NF still exhibits the better catalytic activity, implying the improved intrinsic HER activity [1].

The ECSA of a catalyst sample is calculated from the double-layer capacitance according to the following equation:

$$ECSA = \frac{C_{dl}}{C_s}$$

Cs presents the specific capacitance, the value of which is 0.040 mF cm⁻² in 1 M KOH based on the previous reported literature [2].

- [1] Y. Niu, W. Li, X. Wu, et al., J.Mater. Chem. A 7 (2019) 10534-10542.
- [2] C. L. McCrory, S. Jung, J. Peters, et al., J. Am. Chem. Soc. 135 (2013) 16977-16987.

Fig. S9 (a, b) SEM images; (c) TEM image; (d) The STEM image and (e-h) EDS elemental mapping images Ni, V, O and S of the CS-NS/NF electrode after the HER stability test.

Table S1. Comparison of the HER performance at large current density of CS-NS/NFwith some Ni_3S_2 -based electrocatalysts reported recently.

Catalyst	Electrolyte	Overpotential (mV)	Stability test (h)	Reference
CS-NS/NF	1 M KOH	99@10 mA/cm ²	68	This work

		221@100 mA/cm ²		
		335@500 mA/cm ²		
		394@1000 mA/cm ²		
	1 M KOH	141@10 mA/cm ²	24	Chem. Eng. J. 2021, 404, 126483
Fe-Mo-S/Ni ₃ S ₂ @NF		266@100 mA/cm ²		
		384@500 mA/cm ²		
Ni ₃ S ₂ @NGCLs/NF	1 М КОН	134@10 mA/cm ²	40	Chem. Eng. J. 2020,
		225@100 mA/cm ²		401, 126045
	1 M KOH	$136@10 \text{ mA/cm}^2$	75	Appl. Catal. B
NiWO ₄ /Ni ₃ S ₂		$274@100 \text{ mA/cm}^2$		Environ. 2020, 274,
		274@100 IIIA/eIII		119120
CoNi ₂ S ₄ /Ni ₃ S ₂ @NF	1 M KOH	171@10 mA/cm ²		L Alloys Compd
		350@100 mA/cm ²	20	2020 844 156252
		500@200 mA/cm ²		2020, 044,130232
CoS _x -Ni ₃ S ₂ /NF	1 M KOH	90@10 mA/cm ²	18	Appl Catal B 2020
		275@100 mA/cm ²		260 118780
		318@300 mA/cm ²		207, 110700.
Co ₉ S ₈ -Ni ₃ S ₂ /NF	1 М КОН	210@10 mA/cm ²	24	Chem. Eur. J. 2020,
		450@100 mA/cm ²	24	26, 7900-7911
NS-horn/NF	1 M KOH	$177@10 \text{ mA/cm}^2$	20	Appl. Catal. B
		$350@100 \text{ mA cm}^2$		Environ. 2019,
		550@100 IIIA CIII		257, 117911
Fe-Ni ₃ S ₂ /NF	1 М КОН	47@10 mA/cm ²	20	ACS Catal. 2018, 8,
		232@100 mA cm ⁻²		6, 5431–5441
Co-	1 М КОН	155@10 mA/cm ²	20	J. Mater. Chem. A,
Ni ₃ S ₂ @CNTs/GNF		350@100 mA/cm ²	20	2018, 6, 10490-10496
Sn-Ni ₃ S ₂ /NF	1 М КОН	137@10 mA/cm ²	20	Chemelectrochem
		320@100 mA/cm ²		2017, 4, 594-600

Turnover frequency (TOF) calculations

Because it is hard to identify the number of electrochemical active sites for metal substrate supported electrocataysts, in our calculations, all metal atoms are assumed to be catalytically active. However, because a fraction of metal sites might not contribute to the catalytic reaction, the calculated TOF represents a lower limit. It means that the true TOF is higher.

The values of turnover frequency (TOF) were calculated according to the following equation:

$$TOF = |j| \times S / 2F \times n \tag{1}$$

where, j (mA/cm²) is the measured current density at the potentials; S represents the surface area of the working electrode (CS-NS on NF, cm²); the number 2 stands for a fourelectron transfer per mole of H₂; F is Faraday's constant (96 485.3 C/mol), and n represents the moles of the metal atom on the electrode which can be calculated by using the mass and the molecular weight of the coated catalysts. The corresponding descriptions have been added into the revised manuscript and are expected to meet your requirements.

 Table S2. TOF calculation results of electrocatalysts.

Samples	amount of loading (mg/cm²)	surface area of the working electrode (cm²)	j@η=200 mV (mA/cm²)	TOF (h ⁻¹)
CS-NS/NF	0.71	0.25	80	36.942
TF-NS/NF	0.60	0.25	25	7.773