Journal Name

ARTICLE TYPE

Cite this: DOI: 00.0000/xxxxxxxxx

Composition dependent polymorphism and superconductivity in Y_{3+x} {Rh,Ir}₄Ge_{13-x}

Manuel Feig, ^{*a,b,c*} Wilder Carrillo-Cabrera,^{*d*} Matej Bobnar,^{*d*} Paul Simon,^{*d*} Caroline Curfs,^{*e*} Volodymyr Levytskyi,^{*a*} Alexander A. Tsirlin,^{*f*} Andreas Leithe-Jasper,^{*d*} and Roman Gumeniuk^{**a*}

Received Date Accepted Date

DOI:00.0000/xxxxxxxxx

Supporting Information

^a Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Straße 23, 09596 Freiberg, Germany

^b The Rossendorf Beamline at ESRF, CS 40220, 38043 Grenoble Cedex 9, France

^c gHelmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, P.O. Box 510119, 01314 Dresden, Germany

^d Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany

^e ESRF – The European Synchrotron, CS40220, 38043 Grenoble Cedex, France

^f Experimental Physics VI, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86135 Augsburg, Germany

Fig. S1 The surface of the polished $Y_{3.6}Rh_4Ge_{12.4}$ sample in polarized light.

Fig. S2 Comparison of the half-widths for all three structure types within the $Y_{3+x}Rh_4Ge_{13-x}$ series. The data for the $I4_132$ and $Pm\bar{3}n$ types are analyzed in the PXRD pattern of the x = 0.4 sample while $I4_1/amd$ has been studied in the the x = 0 sample.

Fig. S3 (a) HR-TEM image along [100] direction of $Y_{3,6}Rh_4Ge_{12,4}$ (SG $Pm\bar{3}n$). Two regions (B and C, diameter of about 15 nm) are marked with circles and their respective FFT patterns are shown in (b) and (c). Image (b) does not show superstructure reflections and is indexed using a primitive cubic structure ($Pm\bar{3}n$). In (c) several such reflections are observed (FFT pattern indexed assuming SG $I4_132$). $Y_{3,6}Rh_4Ge_{12,4}$ is inhomogeneous at the nano-size level. This sample is thick and several forbidden reflections are observed in the FFT patterns due to dynamical multi beam effects (see red arrows).

Fig. S4 HR-TEM image along [100] direction for (a) $Y_{3.6}Rh_4Ge_{12.4}$ ($Pm\bar{3}n$ type domain), (b) $Y_{3.4}Rh_4Ge_{12.6}(I4_132 \text{ type area})$ and (c) $Y_3Rh_4Ge_{13}$ ($I4_1/amd$ type). Projections of the corresponding structure models are inserted in the images. Three germanium columns (enclosed by green circles) and one Y column (yellow circle) are marked to emphasize the local differences (see also text and Fig. 6, where a more detailed view is provided).

atom	site	G^{a}	x/a	y/b	z/c	$B_{\rm iso}/{\rm \AA}^2$	
$Y_{3.6}Rh_4Ge_{12.4}$ (SG <i>Pm</i> 3 <i>n</i>)							
Y1	6 <i>c</i>		1/4	0	1/2	0.46(3)	
Y2	12f	0.08(2)	0.099(2)	0	0	0.7(4)	
Rh	8 <i>e</i>		1/4	1/4	1/4	0.30(2)	
Ge1	2a	0.51(5)	0	0	0	0.6(1)	
Ge2	24k	0.59(6)	0	0.1605(4)	0.3366(3)	0.77(5)	
Ge3	24k	0.41(6)	0.1323(4)	0.2721(5)	0	0.89(7)	
Y _{3 4} Rh ₄ Ge _{12 6} (SG <i>I</i> 4 ₁ 32)							
Y1	24h		0.2492(2)	-x+1/4	1/8	0.80(6)	
Y2	24g		0.7498(2)	x - 3/4	1/8	0.66(5)	
Rh1	8b		5/8	3/8	1/8	0.7(1)	
Rh2	8a		1/8	1/8	1/8	0.64(8)	
Rh3	24g		0.3743(1)	1/8	x - 1/4	0.6(1)	
Rh4	24h		5/8	0.1254(2)	-y + 1/4	0.6(1)	
Ge1	16e	0.80(1)	-0.0008(2)	x	x	1.08(3)	
Ge2	48 <i>i</i>		0.5750(1)	-0.0008(3)	0.1556(1)	0.98(8)	
Ge3	48 <i>i</i>		0.6303(1)	0.0675(2)	-0.0009(3)	1.03(8)	
Ge4a	48 <i>i</i>	0.74(1)	0.1601(2)	0.0764(2)	0.0027(4)	0.69(4)	
Ge4b	48 <i>i</i>	0.26(1)	0.0002(9)	0.1192(5)	0.0665(5)	0.7(2)	
T	48 <i>i</i>	b	0.5000(3)	0.1724(1)	0.0844(2)	1.15(8)	
			Y _{3.6} Ir ₄ Ge _{12.4}	(SG <i>I</i> 4 ₁ 32)			
Y1	24h		0.2501(3)	-x + 1/4	1/8	1.06(1)	
Y2	24g		0.7506(3)	x - 3/4	1/8	1.27(1)	
Ir1	8b		5/8	3/8	1/8	0.73(1)	
Ir2	8a		1/8	1/8	1/8	0.65(1)	
Ir3	24g		0.3741(2)	1/8	x - 1/4	0.97(1)	
Ir4	24h		5/8	0.1252(2)	-y + 1/4	1.05(1)	
Ge1	16e		0.0018(2)	x	x	1.98(1)	
Ge2	48 <i>i</i>		0.4995(9)	0.1724(2)	0.0777(2)	1.99(1)	
Ge3a	48 <i>i</i>	0.79(1)	0.5770(2)	0.0007(9)	0.1613(2)	0.81(1)	
Ge3b	48 <i>i</i>	0.21(1)	0.5595(7)	0.000(2)	0.1189(6)	1.03(1)	
Ge4a	48 <i>i</i>	0.59(1)	0.1700(3)	0.0773(3)	0.0002(9)	0.94(1)	
Ge4b	48 <i>i</i>	0.41(1)	0.0642(4)	0.997(1)	0.3683(4)	0.81(1)	
Т	48 <i>i</i>	С	0.6378(2)	0.0656(2)	-0.0017(9)	1.91(3)	

Table S1 Atomic coordinates, occupational (G) and displacement (B) parameters for $Y_{3.6}Rh_4Ge_{12.4}$, $Y_{3.4}Rh_4Ge_{12.6}$ and $Y_{3.6}Ir_4Ge_{12.4}$.

^{*a*} occupancy *G* is given only if it deviates from 1.0 ^{*b*} T = 0.94(2)Ge + 0.06(2)Y ^{*c*} T = 0.81(1)Ge + 0.19(1)Y

atom	site	G	x/a	y/b	z/c	$B_{\rm iso}/{\rm \AA}^2$
$Y_3Rh_4Ge_{13}$ (SG $I4_1/amd$)						
Y1	16g		0.2505(4)	x + 1/4	7/8	0.47(8)
Y2	16 <i>h</i>		0	0.1255(6)	0.0013(9)	0.55(8)
Y3	16h		0	0.1255(6)	0.4993(8)	0.47(8)
Rh1	16g		0.1256(4)	x + 1/4	7/8	0.24(16)
Rh2	16g		0.3742(4)	x + 1/4	7/8	0.24(16)
Rh3	32 <i>i</i>		0.1245(4)	0.1254(4)	0.1249(2)	0.39(16)
Ge1	16h		0	0.1252(6)	0.6836(6)	0.68(4) ^{<i>a</i>}
Ge2	16h		0	0.1724(6)	0.1687(6)	0.68
Ge3	16h		0	0.0006(7)	0.2450(6)	1.34(8)
Ge4	16h		0	0.6588(6)	0.1741(6)	0.68
Ge5a	16h	0.68(3)	0	0.1597(12)	0.3237(10)	0.68
Ge5b	16h	0.32	0	0.123(3)	0.315(2)	0.68
Ge6	32 <i>i</i>		0.2507(6)	0.1697(4)	0.1696(3)	0.68
Ge7	32 <i>i</i>		0.3278(3)	0.0838(3)	0.5001(6)	0.68
Ge8	32 <i>i</i>		0.0704(4)	0.0004(5)	0.1067(3)	1.34(16)
Ge9	32 <i>i</i>		0.1358(3)	0.0667(3)	0.2500(6)	0.95(8)
			$Y_3Ir_4Ge_{13}$ ($(SG I4_1/amd)$		
Y1	16g		0.2501(5)	x + 1/4	7/8	0.92(2)
Y2	16 <i>h</i>		0	0.1244(8)	0.0005(11)	0.92(2)
Y3	16h		0	0.1267(8)	0.4996(11)	0.92(2)
Ir1	16g		0.1251(3)	x + 1/4	7/8	0.71(2)
Ir2	16g		0.3745(3)	x + 1/4	7/8	0.67(2)
Ir3	32 <i>i</i>		0.1254(3)	0.1255(3)	0.1249(2)	0.57(2)
Ge1	16h		0	0.1249(8)	0.6857(7)	1.07(2)
Ge2	16h		0	0.1723(7)	0.1695(8)	1.05(2)
Ge3	16h		0	0.0027(8)	0.2455(7)	1.29(2)
Ge4	16h		0	0.6599(8)	0.1747(8)	1.01(2)
Ge5	16h		0	0.1486(8)	0.3182(9)	1.20(2)
Ge6	32 <i>i</i>		0.2502(8)	0.1697(5)	0.1691(4)	1.03(2)
Ge7	32 <i>i</i>		0.3268(5)	0.0838(5)	0.5003(8)	1.01(2)
Ge8	32 <i>i</i>		0.0683(5)	0.0007(8)	0.1084(4)	1.24(2)
Ge9	32 <i>i</i>		0.1338(5)	0.0658(5)	0.2498(8)	1.25(2)

Table S2 Atomic coordinates, occupational (G) and displacement (B) parameters for $Y_3Rh_4Ge_{13}$ and $Y_3Ir_4Ge_{13}$.

 $^aB_{\rm iso}$ for all Ge-atoms, with the exception of Ge3, Ge8, Ge9, were fixed to the same value.

$x = 0.6$ (SG $Pm\bar{3}n$)						
Y1	Ge	3.038(2) - 3.301(4)	Rh	Ge	2.484(2) - 2.503(1)	
	Rh	3.1682(1)	Ge	Ge	2.370(5) - 3.392(3)	
	Y1	4.4805(1)				
$x = 0.4$ (SG $I4_132$)						
Y1	Ge	3.029(5) - 3.46(1)	Y2	Ge	3.088(4) - 3.336(4)	
	Rh	3.146(3) - 3.177(3)		Rh	3.162(3) - 3.187(4)	
	Y1	4.4773(1)		Y2	4.4772(1)	
Rh1	Ge	2.459(4)	Rh3	Ge	2.458(5) - 2.513(6)	
Rh2	Ge	2.439(6) - 2.47(2)	Rh4	Ge	2.477(5) - 2.498(5)	
Ge	Ge	2.464(9) - 3.454(6)				
$x = 0$ (SG $I4_1/amd$)						
Y1	Ge	3.03(2) - 3.258(7)	Y2	Ge	3.08(2) - 3.36(2)	
	Rh	3.15(2) - 3.17(2)		Rh	3.14(2) - 3.19(2)	
	Y1	4.4775(1)		Y2	4.45(2) - 4.48(2)	
Y3	Ge	3.00(2) - 3.38(2)	Rh1	Ge	2.46(1) - 2.495(9)	
	Rh	3.16(2) - 3.17(2)	Rh2	Ge	2.469(4) - 2.51(1)	
	Y3	4.45(2) - 4.48(2)	Rh3	Ge	2.46(1) - 2.52(1)	
Ge	Ge	2.52(2) - 3.44(2)				

Table S3 Bonding distances for all three structure types in the $\mathsf{Y}_{3+x}\mathsf{Rh}_4\mathsf{Ge}_{13-x}$ system.