Electronic Supporting Information

Gold(I) Complexes of Tetra-tert-butylcyclotetraphosphane

Content

1.	Reac	Reaction of $[(AuCl)_2 \{cyclo-(P^tBu)_4\}]$ (2) with PPh ₃ 1				
2. Identification of Oxidation Products			1			
	2.1.	Preparation of the Oxides $cyclo$ -(P ^t Bu) ₄ O ₁₋₃	2			
	2.2.	Preparation of [(AuCl){cyclo-(P ^t Bu) ₄ }O ₁₋₃]	2			
	2.3.	Preparation of $[(AuCI)_2 \{cyclo-(P^tBu)_4\}O_{1-2}]$	3			
3.	Infra	red Spectra of 4	6			
4. X-Ray Crystallography			6			
	4.1.	Single Crystal X-Ray Diffraction	6			
	4.2.	Powder X-Ray Diffraction	9			
5.	Quar	ntum Chemical Calculations	12			
6.	5. Differential Thermal Analysis of [(AuCl){ <i>cyclo</i> -(P ^t Bu) ₄ }] (1)13					
7.	7. NMR Spectra1					
	7.1.	[(AuCl){ <i>cyclo</i> -(P ^{<i>t</i>} Bu) ₄ }] (1)	15			
	7.2.	[(AuCl) ₂ { <i>cyclo</i> -(P ^t Bu) ₄ }] (2)	17			
	7.3.	[(AuCl) ₄ { <i>cyclo</i> -(P ^t Bu) ₄ }] (4)	22			
8.	Refe	rences	22			

1. Reaction of [(AuCl)₂{cyclo-(P^tBu)₄}] (2) with PPh₃

4.45 mg (0.0054 mmol) [(AuCl)₂{*cyclo*-(P^tBu)₄}] (**2**) and 1.04 mg (0.0040 mmol, 0.73 equiv.) PPh₃ were dissolved in 1 ml THF and stirred for 5 min. The reaction mixture was examined by ³¹P{¹H} NMR spectroscopy (Fig. S1).

Fig. S1 ³¹P{¹H} NMR spectrum (162 MHz) of the reaction mixture of **2** + PPh₃ in THF with lock to benzene-*d*⁶ (capillary) ([(AuCl){cyclo-(P^tBu}]] (**1**), [1,2-(AuCl)₂{cyclo-(P^tBu}]] (**2a**), [1,3-(AuCl)₂{cyclo-(P^tBu}]] (**2b**)).

2. Identification of Oxidation Products

In the ³¹P{¹H} NMR spectrum of [(AuCl)₂{*cyclo*-(P^{*t*}Bu)₄}] (**2**), three additional AM₂X spin systems are observed. One of them can be assigned to the complex [(AuCl){*cyclo*-(P^{*t*}Bu)₄}] (**1**), the other two to [(AuCl)₃{*cyclo*-(P^{*t*}Bu)₄}] (**3**) and supposedly a gold(I) complex with an oxidised ligand. To identify the corresponding compound, several oxidation studies on the NMR scale were conducted. First, *cyclo*-(P^{*t*}Bu)₄ was oxidised in benzene-*d*⁶ to give the oxidised species *cyclo*-(P^{*t*}Bu)₄O₁₋₃ (see Section 2.1) which were already reported.¹ Subsequent addition of one equivalent of [AuCl(tht)] gives the corresponding mononuclear gold(I) complexes of *cyclo*-(P^{*t*}Bu)₄O₁₋₃ (see Section 2.2). The addition of another equivalent [AuCl(tht)] should yield the dinuclear gold(I) complexes of *cyclo*-(P^{*t*}Bu)₄O₁₋₂ (see Section 2.3). Indeed, one of the AM₂X spin systems observed in the ³¹P{¹H} NMR spectrum of **2** as mentioned above could be assigned to a dinuclear gold(I) complex of the monoxide *cyclo*-(P^{*t*}Bu)₄O, enabling the correct assignment of the ³¹P{¹H} NMR spectrum of **3**.

2.1. Preparation of the Oxides cyclo-(P^tBu)₄O₁₋₃

24.16 mg (0.069 mmol) *cyclo*-(P^tBu)₄ (**L**) were dissolved in 0.5 ml benzene- d^6 and oxidised with 0.01 ml of a ^tBuOOH solution (>5.5 M in decane). The solution was stirred for 1 h at ambient temperature. The reaction mixture (Scheme S1) was examined by ³¹P{¹H} NMR spectroscopy (Fig. S2).

Scheme S1 Reaction of L with ^tBuOOH gives the oxides *cyclo*-(P^tBu)₄O₁₋₃ (11–14).¹ The spin systems are denoted in pink.

Fig. S2 ³¹P{¹H} NMR spectrum (162 MHz) of the mixture of the oxides *cyclo*-(P^tBu)₄O₁₋₃ in benzene-*d*⁶. The assignment of the resonances follows the literature (Scheme S1).¹

2.2. Preparation of [(AuCl){cyclo-(P^tBu)₄}O₁₋₃]

22.0 mg (0.069 mmol, 1 equiv. based on **L**) [AuCl(tht)] were added to the solution of oxides *cyclo*- $(P^{t}Bu)_{4}O_{1-3}$ described above (Section 2.1). The reaction mixture (Scheme S2) was examined by ³¹P{¹H} NMR spectroscopy (Fig. S3). Only compounds **21** and **31** could be observed and identified based on their spin systems, their chemical shifts and their abundancy related to those of the oxides **11–14** in Section 2.1.

Scheme S2 The reaction of the oxides with [AuCl(tht)] may form the complexes 21, 22, 31, 32 and 41. However, only 21 and 31 were observed by ³¹P{¹H} NMR spectroscopy (Fig. S3). The spin systems are denoted in pink.

Fig. S3 ³¹P{¹H} NMR spectrum (162 MHz) after the addition of 1 equiv. [AuCl(tht)] to the solution of the oxides $cyclo-(P^tBu)_4O_{1-3}$ in benzene- d^6 .

2.3. Preparation of [(AuCl)₂{cyclo-(P^tBu)₄}O₁₋₂]

Further 20.41 mg (0.064 mmol, 0.93 equiv. based on **L**) [AuCl(tht)] were added to the solution of Section 2.2. The reaction mixture (Scheme S3) was examined by ³¹P{¹H} NMR spectroscopy (Fig. S4). Among the hypothetic products, only **24** could be observed.

Scheme S3 Addition of one further equivalent [AuCl(tht)] may form the compounds 23, 24, 33 and 34. The spin systems are denoted in pink. Only 24 could be identified among the possible products under the given reaction conditions.

Fig. S4 ³¹P{¹H} NMR spectrum (162 MHz) after the addition of one further equivalent [AuCl(tht)] to the solution of Section 2.2 in benzene-*d*⁶.

The ³¹P{¹H} NMR parameters of **24** and **31** were determined by automated line-shape analysis (Fig. S5). No *R*-values are given due to strong overlap. However, as the spin systems are almost first order, the parameters can be considered as reliable, although the ${}^{2}J_{PP}$ coupling J_{AX} is not resolved anymore due to strong line broadening.

24: ³¹P{¹H} NMR (162 MHz, benzene-*d*⁶): AM₂X spin system (*C*₁): $\delta_A = 71.62$, $\delta_M = 40.46$, $\delta_X = -15.51$ ppm; $J_{AM} = -129.11$ Hz, $J_{AX} = 0.01$ Hz, $J_{MX} = -253.16$ Hz; H = 14.03 Hz.

31: ³¹P{¹H} NMR (162 MHz, benzene-*d*⁶): ABMX spin system (*C*₁): $\delta_A = 99.15$, $\delta_B = 95.10$, $\delta_M = 25.65$, $\delta_X = -1.74$ ppm; $J_{AB} = -120.44$ Hz, $J_{AM} = -159.22$ Hz, $J_{AX} = 26.71$ Hz, $J_{BM} = 20.19$ Hz, $J_{BX} = -263.27$ Hz, $J_{MX} = -285.61$ Hz; $H_A = H_B = H_X = 10$ Hz, $H_M = 11$ Hz.

Fig. S5 Calculated ³¹P{¹H} NMR spectra (162 MHz) (bottom) of **24** and **31**.

3. Infrared Spectra of 4

Fig. S6 Comparison of the IR spectra of **4**. Top: precipitate of **4**, bottom: single crystals of **4**. Apart from the vibration at 549 cm⁻¹, the spectra look alike.

4. X-Ray Crystallography

4.1. Single Crystal X-Ray Diffraction

Crystallographic data obtained from single-crystal X-ray diffraction are summarised in Table S1.

4.1.1. Detailed Description of the Relative Abundancies in the Single Crystal Structure of 2.

The disorder in the crystal structure of **2b** (Fig. S7) which describes the coordination of the third Au– Cl fragment (Au3–Cl3 and Au3'–Cl3') was refined to 3.43%. To calculate the relative abundancies of the oligonuclear complexes the binomial coefficient was used regarding an excerpt with the two symmetry-independent molecules where p is the refined percentage of the disorder and P is the relative abundancy. The calculation is based on the smallest repeating unit, but because of the law of large numbers, the obtained abundancies are valid for the whole crystal.

Fig. S7 Segment of the crystal structure of complex 2b which shows the discussed disorder with the disordered fragments drawn transparently.

Compound	<i>cyclo</i> -(P ^t Bu)₄ · 0.5 THF	1–α+	1 –β	2b	3 ⋅ 2.5 C ₇ H ₈	4
Empirical formula	C ₁₈ H ₄₀ O _{0.5} P ₄	C ₁₆ H ₃₆ AuClP ₄	C ₁₆ H ₃₆ AuClP ₄	$C_{16}H_{36}Au_2Cl_2P_4$	$C_{33.5}H_{56}Au_3Cl_3P_4$	$C_{16}H_{36}Au_4Cl_4P_4$
Formula weight	388.38	584.74	584.74	817.16	1279.91	1281.99
Temperature [K]	130(2)	140(2)	293(2)‡	130(2)	220(2)‡	130(2)
Wavelength [pm]	71.073	71.073	71.073	71.073	71.073	71.073
Crystal system	Monoclinic	Monoclinic	Monoclinic	Orthorhombic	Monoclinic	Monoclinic
Space group	C2/c	P2 ₁ /c	P2 ₁ /m	Pnma	C2/c	C2/c
Unit cell						
a [Å]	23.5187(4)	10.8779(1)	9.043(1)	12.5495(1)	19.0733(4)	10.5127(2)
<i>b</i> [Å]	10.9722(2)	48.9793(6)	10.940(2)	14.9777(2)	24.8181(6)	15.8076(2)
c [Å]	18.0895(3)	13.1705(2)	12.499(1)	26.6883(3)	17.9778(3)	17.1149(2)
α [deg]	90	90	90	90	90	90
β [deg]	97.265(2)	89.996(1)	101.55(1)	90	98.934(2)	101.024(1)
γ [deg]	90	90	90	90	90	90
Volume [ų]	4630.55(14)	7017.1(2)	1211.4(3)	5016.4(1)	8406.8(3)	2791.68(7)
Ζ	4	12	2	8	8	4
ho (calc) [Mg/m ³]	1.114	1.660	1.603	2.164	2.023	3.050
μ mm ⁻¹	0.326	6.674	6.443	12.153	10.810	21.572
F(000)	1696	3456	576	3072	4840	2304
Crystal size [mm ³]	0.20x0.20x0.10	0.33 x 0.30 x 0.19	0.36 x 0.25 x 0.16	0.23 x 0.21 x 0.11	0.22 x 0.03 x 0.03	0.19x0.12x0.07
Θ min / Θ max [deg]	2.270 / 32.303	1.987 / 26.646	2.496 / 29.311	2.228 / 30.227	2.294 / 28.518	2.357 / 34.810
Index ranges	$-35 \le h \le 33$	$-13 \le h \le 12$	–12 ≤ <i>h</i> ≤ 11	$-17 \le h \le 17$	$-24 \le h \le 25$	–16 ≤ <i>h</i> ≤ 16
	$-16 \le k \le 16$	$-61 \le k \le 61$	$-14 \leq k \leq 14$	$-21 \le k \le 21$	<i>−</i> 32 ≤ <i>k</i> ≤ 31	$-24 \le k \le 24$
	$-27 \le l \le 27$	$-16 \leq l \leq 16$	$-14 \leq l \leq 16$	$-36 \le l \le 36$	$-23 \le l \le 23$	$-27 \le l \le 25$
Reflections collected	46765	59314	12440	67611	36462	21549
Independent reflections [R(int)]	7863 [0.0374]	13844 [0.0411]	3061 [0.0649]	7421 [0. 0517]	9694 [0.0734]	5710 [0.0215]
Completeness [%] (Θ) [deg]	100 (25.242)	99.9 (25.350)	99.9 (25.350)	100 (28.285)	99.9 (26.360)	100 (33.140)
T _{Max} / T _{Min}	1.00000 / 0.97254	0.432 / 0.237	0.498 / 0.182	0.349 / 0.098	0.751 / 0.394	0.290 / 0.139
Restraints / parameters	4 / 238	0 / 632	1 / 117	2 / 265	408 / 512	0 / 133
Goodness-of-fit on F ²	1.046	1.126	1.069	1.086	1.008	1.163
$R_1, wR_2 [I > 2\sigma(I)]$	0.0364, 0.0862	0.0300, 0.0602	0.0393, 0.0843	0.0290, 0.0553	0.0475, 0.0686	0.0197, 0.0357
R indices (all data)	0.0473, 0.0916	0.0319, 0.0610	0.0630, 0.0977	0.0379, 0.0581	0.1009, 0.0822	0.0228, 0.0363
Residual electron density [e·Å ⁻³]	0.429 / -0.393	0.986 / -0.742	0.624 / -0.793	2.470 / -1.033	1.121 / -0.920	0.906 / -1.598
CCDC number	2131408	2143199	2143200	2143201	2143202	2143203

 Table S2
 Summary of Crystallographic Data Obtained from Single-Crystal X-Ray Diffraction.

⁺ Two component pseudomerohedral twin. Twin law by rows –1.00 0.00 0.00 0.00 –1.00 0.00 0.00 1.00; Twin domain ratio: 0.6087(5) : 0.3913(5).

[‡] As a result of a phase transition the data was recorded at elevated temperatures to avoid twinning.

4.2. Powder X-Ray Diffraction

Powder X-ray diffraction data (Table S3) were collected on a STADI P diffractometer (STOE) with a silicon solid-state detector Mythen-1K (DECTRIS) at room temperature. The radiation source was a copper anode (Cu-K_{ar} λ = 1.540598Å) combined with a germanium single crystal monochromator. Samples were measured in sealed glass capillaries (inner diameter 0.3 mm or 0.5 mm, HILGENBERG) with Debye-Scherrer geometry. The theoretical powder pattern from the single crystal structures was calculated using MERCURY.² The Rietveld analysis for complexes **1** and **4** was performed with a fundamental parameter approach using the software TOPAS³ version 5 (Bruker). The background was modelled by a polynomial function (6th order) of the Chebyshev type. Peak shapes were assigned and allowed to freely refine for gold and all remaining elements. The molecule was treated as a rigid body for which the molecular parameters were taken from the single crystal structures of **1** and **4**, only allowing the torsion angles of the P–P bonds to be refined. A summary of the powder X-ray is given in Table S3.

Fig. S8 Rietveld refinement plots for polymorph $1-\beta$ with peak markers and difference plot at the bottom. The peak at $2\theta = 9^{\circ}$ corresponds to an unknown impurity and not to the structures of the ligand *cyclo*-(P^tBu)₄ (L) or the dinuclear complex **2**.

Fig. S9 Comparison of PXR diffractograms. From top to bottom: complex $1-\beta$, complex 2, *cyclo*-(PⁱBu)₄ (L) (simulated pattern from single crystal structure) and *cyclo*-(PⁱBu)₄·0.5 THF (simulated pattern from single crystal structure). As can be seen, the peak at $2\theta = 9^\circ$ in the PXR diffractogram of $1-\beta$ cannot be assigned to the structure of **2** or *cyclo*-(PⁱBu)₄.

Fig. S10 Rietveld refinement plots for polymorph $4-\alpha$ (crystals grown by layering) with peak markers and difference plot at the bottom.

Fig. S11 Rietveld refinement plots for complex $4-\alpha$ (powder sample obtained by alternative procedure) with peak markers and difference plot at the bottom.

Fig. S12 LeBail refinement plots for the second polymorph or solvatomorph of complex 4 (4– β) with peak markers and difference plot at the bottom.

Compound	1 –α (powder)	4 (powder)	4 (crystals)	4 (second
				polymorph/solvatomo
				rph)
Empirical formula	$C_{16}H_{36}Au_1CI_1P_4$	$C_{16}H_{36}Au_4Cl_4P_4$	$C_{16}H_{36}Au_4CI_4P_4$	-
Formula weight	584.74	1281.99	1281.99	-
Temperature [K]	298	298	298	298
Wavelength [pm]	154.0598	154.0598	154.0598	154.0598
Crystal system	Monoclinic	Monoclinic	Monoclinic	Tetragonal
Space group	P2 ₁ /m	C2/c	C2/c	P4/nnc
Unit cell				
a [Å]	9.0619	10.6347	10.6250	10.9278
<i>b</i> [Å]	10.9843	15.9089	15.9049	
c [Å]	12.5184	17.2976	17.3169	30.9825
α [deg]	90	90	90	90
β [deg]	101.425	101.104	100.822	90
γ [deg]	90	90	90	90
Volume [Å ³]	1221.371	2871.736	2874.336	3699.825
Ζ	2	4	4	-
Θ min / Θ max [deg]	5 / 63	2 / 100	2 / 60	2 / 80
Beq(Au) [Ų]	1.779	1.784	1.001	-
Beq(all) [Ų]	9.927	1.002	1.003	-
Goodness-of-fit	2.259341	1.522759	3.783901	5.180476
R _{Bragg} [%]	4.017274	17.20614	11.76124	3.291281
R _{exp} [%]	4.155916	6.308893	4.782182	4.536968
R _{wp} [%]	9.389630	9.606922	18.09530	23.50365
<i>R</i> _p [%]	6.895997	7.480211	13.77888	15.28656

 Table S3
 Summary of Crystallographic Data obtained from Powder X-Ray Diffraction.

5. Quantum Chemical Calculations

All calculations were carried out with DFT using the program ORCA⁴ (version 5.0.1). For all calculations, the convergence criterion was set to tight SCF convergence and the atom-pairwise dispersion correction based on tight binding partial charges (D4)^{5,6} was used. Relativistic effects were considered using Zero Order Regular Approximation (ZORA).⁷ Furthermore, the RIJDX approximation was used to speed up the calculations. In all cases the free Gibbs energy ΔG was calculated using a numerical frequency analysis. In each case only positive Eigenvalues in the Hesse matrix confirmed an energetic minimum.

In analogy to our previous study,⁸ different combinations of functionals and basis sets were tested. For all calculations, the TPSSh functional^{9,10} in combination with the def2-TZVP¹¹ basis set was used because this showed the best agreement with the molecular parameters obtained from the single crystal X-ray diffraction measurements. The simulation of the solvent environment was performed using the conductor-like polarisable continuum model (C-PCM)¹² model. For calculations of all molecules the solvent was set to tetrahydrofuran (THF). Additional calculations were run for the dinuclear complexes for which the solvents were set to benzene, toluene, and acetonitrile. The calculated Gibbs energies and Gibbs reaction energies are listed in Table S4 and Table S5.

Compound	G		
cyclo-(P ^t Bu) ₄ (L)	-1996.9		
[(AuCl){ <i>cyclo</i> -(P ^t Bu) ₄ }] (1)	-2593.2		
[1,2-(AuCl) ₂ { <i>cyclo</i> -(P ^t Bu) ₄ }] (2a)	-3189.4		
[1,3-(AuCl) ₂ { <i>cyclo</i> -(P ^t Bu) ₄ }] (2b)	-3189.4		
[(AuCl) ₃ { <i>cyclo</i> -(P ^{<i>t</i>} Bu) ₄ }] (3)	-3785.6		
[(AuCl) ₄ { <i>cyclo</i> -(P ^{<i>t</i>} Bu) ₄ }] (4)	-4381.8		
[AuCl(tht)]	-1151.7		
tht	-555.5		

Table S4 Calculated Gibbs energies (given in Hartree) for the molecules in this article.

Table S5 Gibbs reaction energies (given in kJ mol⁻¹) for the reactions in this article

Reaction			ΔG
<i>cyclo</i> -(P ^t Bu) ₄ + [AuCl(tht)]	\rightarrow	$[(AuCI){cyclo-(P^tBu)_4}] + tht$	-63.2
[(AuCl){ <i>cyclo</i> -(P ^t Bu) ₄ }] + [AuCl(tht)]	\rightarrow	$[1,2-(AuCl)_2\{cyclo-(P^tBu)_4\}] + tht$	-46.7
$[1,2-(AuCl)_{2}(cyclo-(P^{t}Bu)_{4})] + [AuCl(tht)]$	\rightarrow	$[(AuCI)_{3}\{cyclo-(P^{t}Bu)_{4}\}] + tht$	-36.4
[(AuCl) ₃ { <i>cyclo</i> -(P ^t Bu) ₄ }] + [AuCl(tht)]	\rightarrow	[(AuCl) ₄ { <i>cyclo</i> -(P ^t Bu) ₄ }] + tht	-27.7
2 [(AuCl){ <i>cyclo</i> -(P ^t Bu) ₄ }]	\rightarrow	$[1,2-(AuCl)_2\{cyclo-(P^tBu)_4\}] + cyclo-(P^tBu)_4$	0.006
2 [1,2-(AuCl) ₂ { <i>cyclo</i> -(P ^t Bu) ₄ }]	\rightarrow	$[(AuCI)_3\{cyclo-(P^tBu)_4\}] + [(AuCI)\{cyclo-(P^tBu)_4\}]$	0.004
2 [(AuCl) ₃ { <i>cyclo</i> -(P ^t Bu) ₄ }]	\rightarrow	$[(AuCl)_{4} \{cyclo-(P^{t}Bu)_{4}\}] + [1,2-(AuCl)_{2} \{cyclo-(P^{t}Bu)_{4}\}]$	0.003
[1,2-(AuCl) ₂ { <i>cyclo</i> -(P ^t Bu) ₄ }]	\rightarrow	[1,3-(AuCl) ₂ { <i>cyclo</i> -(P ^t Bu) ₄ }] (in benzene)	-0.5
[1,2-(AuCl) ₂ { <i>cyclo</i> -(P ^t Bu) ₄ }]	\rightarrow	[1,3-(AuCl) ₂ { <i>cyclo</i> -(P ^t Bu) ₄ }] (in toluene)	-0.6
[1,2-(AuCl) ₂ { <i>cyclo</i> -(P ^t Bu) ₄ }]	\rightarrow	[1,3-(AuCl) ₂ { <i>cyclo</i> -(P ^t Bu) ₄ }] (in THF)	-3.0
[1,2-(AuCl) ₂ { <i>cyclo</i> -(P ^t Bu) ₄ }]	\rightarrow	[1,3-(AuCl) ₂ {cyclo-(P ^t Bu) ₄ }] (in MeCN)	-2.5
<i>cyclo</i> -(P ^t Bu) ₄ + 2 [AuCl(tht)]	\rightarrow	$[1,2-(AuCl)_{2}{cyclo-(P^{t}Bu)_{4}}] + 2 \text{ tht}$	-109.9
<i>cyclo</i> -(P ^t Bu) ₄ + 3 [AuCl(tht)]	\rightarrow	$[(AuCl)_3\{cyclo-(P^tBu)_4\}] + 3 \text{ tht}$	-146.3
<i>cyclo</i> -(P ^t Bu) ₄ + 4 [AuCl(tht)]	\rightarrow	$[(AuCl)_4 \{cyclo-(P^tBu)_4\}] + 4 \text{ tht}$	-174.1

6. Differential Thermal Analysis of [(AuCl){cyclo-(P^tBu)₄}] (1)

TG-DTA was performed with a STA449F1 instrument (Netzsch) under argon as protective gas and 20 K/min heating rate in an Al_2O_3 crucible. Above 196 °C, thermolysis of **1** leads to the formation of elemental gold with a residual mass of 33.67% (calculated 33.68%).

7. NMR Spectra

All NMR spectra have been recorded in benzene- d^6 at 25 °C unless stated otherwise. δ_{mean} at 25 °C can be correlated to the number of gold(I) chloride fragments in compounds $cyclo-(P^tBu)_4$ (L) and **1–3** (Table S6 and Diagram S1).

benzene-d ⁶ at 25 °C and the chemical shift of 4 .			
Compound	n	δ_{mean}	
L	0	-57.70	
1	1	-33.17	
2	2	-10.08	
3	3	11.48	
4	4	29.3*	

Table S6 Correlation between *n* and δ_{mean} in the ³¹P{¹H} NMR spectra of [(AuCl)_n{*cyclo*-(P^tBu)₄}] (*n* = 0–3) in benzene-*d*⁶ at 25 °C and the chemical shift of **4**.

* This value was determined by ³¹P{¹H} CP MAS NMR.

Diagram S1 Linear fit of δ_{mean} at 25 °C (red dots) against *n* in the compounds [(AuCl)_n{cyclo-(P^tBu)₄}] (*n* = 0–3) (**L**, 1–3) and the experimental value of **4** (arithmetic mean), determined by ³¹P{¹H} (CP-MAS) NMR (blue triangle, s. Fig. S26).

Fig. S14 1 H NMR spectrum (400 MHz) of **1**.

135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 ppm

Fig. S15 ¹³C{¹H} NMR spectrum (101 MHz) of **1**.

Fig. S16 ¹³C{¹H,³¹P} NMR spectrum (101 MHz) of **1** at 28 °C.

Fig. S17 Experimental (top) and simulated (bottom) ³¹P{¹H} NMR spectra (162 MHz) of **1**.

7.2. $[(AuCl)_2 \{ cyclo - (P^tBu)_4 \}]$ (2)

Fig. S18 ¹H NMR spectrum (400 MHz) of 2.

130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 ppm

Fig. S19 $^{13}C\{^{1}H\}$ NMR spectrum (101 MHz) of 2.

130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 ppm

Fig. S20 ¹³C{¹H,³¹P} NMR spectrum (101 MHz) of **2** at 28 °C.

Fig. S21 ³¹P{¹H} NMR spectrum (162 MHz) of **2** with small amounts of **1** and **3** (equilibrium). The trace impurity **O** is the oxide [1,3-(AuCl)₂{*cyclo*-(P^tBu)₄}O] (**24**).

Fig. S22 Experimental (top) and simulated (bottom) ³¹P{¹H} NMR spectra (162 MHz) of **2a**, **2b** and **3** in benzene*d*⁶.

³¹P{¹H} NMR (162 MHz, benzene-*d*⁶): **2a**: AA'XX' spin system (*C*₂): $\delta_A = \delta_{A'} = 8.53$, $\delta_X = \delta_{X'} = -30.20$ ppm; $J_{AA'} = -168.59$ Hz, $J_{AX} = -220.31$ Hz, $J_{XX'} = -119.95$ Hz, $J_{AX'} = 0.48$ Hz, H = 3.34 Hz; **2b**: A₂B₂ spin system (*C*₂*v*): $\delta_A = -8.28$, $\delta_B = -8.82$ ppm; $J_{AB} = -206.30$ Hz, H = 3.0 Hz; **3**: AM₂X spin system (*C*_s): $\delta_A = 29.24$, $\delta_M = 11.40$, $\delta_X = -5.82$ ppm; $J_{AM} = -132.74$ Hz, $J_{AX} = -4.96$, $J_{MX} = -230.86$ Hz, H = 2.85 Hz. (*R* = 0.68%)

Fig. S23 Experimental ³¹P{¹H} NMR spectrum (162 MHz) of **2** in acetonitrile-*d*³ (top) and simulated (bottom) of **2b**.

³¹P{¹H} NMR (162 MHz, acetonitrile- d^3): **2b**: A₂B₂ spin system (C_{2v} , R = 1.03 %): $\delta_A = -5.16$, $\delta_B = -10.89$ ppm; $J_{AB} = -206.30$ Hz, H = 2.90 Hz.

Fig. S24 ³¹P{¹H} NMR spectrum (162 MHz) of **2** in THF-*d*⁸.

³¹P{¹H} NMR (162 MHz, THF-*d*⁸): **2b**: A₂B₂ spin system (C_{2v} , R = 0.52%): $\delta_A = -7.34$, $\delta_B = -9.39$ ppm; $J_{AB} = -202.84$ Hz, H = 5.86 Hz.

Fig. S25 ${}^{31}P{}^{1}H$ NMR spectrum (162 MHz) of 2 in toluene- d^{8} .

³¹P{¹H} NMR (162 MHz, toluene-*d*⁸): **2b**: A₂B₂ spin system (C_{2v} , R = 0.43%): $\delta_A = -8.46$, $\delta_B = -8.69$ ppm; $J_{AB} = -206.30$ Hz, H = 3.79 Hz.

7.3. [(AuCl)₄{*cyclo*-(P^tBu)₄}] (4)

The solid-state ³¹P{¹H} NMR experiment was performed with an applied MAS rate of 12,500 ± 2 Hz which was controlled by a pneumatic control unit. The temperature of 295.0 K was maintained with a deviation of ±0.2 K by a temperature control unit. Optimised ¹H and ³¹P π /2 pulse lengths were 2.5 µs and 2.6 µs, respectively. ³¹P transverse magnetisation created by ramped CP (70–100%) was transferred from ¹H with an optimised contact time of 1 ms and a ³¹P RF lock field of 38.9 kHz, fulfilling the Hartmann–Hahn condition. The spectrum was recorded with 25,600 scans with a recycle delay of 3.0 s. A Lorentzian apodization function with a line broadening factor of 100 Hz was applied prior to Fourier transformation.

Fig. S26 ³¹P{¹H} (CP-MAS) spectrum of 4.

8. References

- 1 M. Baudler, A. Michels and M. Michels, Z. Anorg. Allg. Chem., 2001, 627, 31.
- 2 C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, *J. Appl. Crystallogr.*, 2008, **41**, 466.
- 3 Topas, Bruker AXS GmbH, Karlsruhe, 2014.
- 4 F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2018, 8.
- 5 E. Caldeweyher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2017, 147, 34112.
- 6 E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth and S. Grimme, *J. Chem. Phys.*, 2019, **150**, 154122.
- 7 C. van Wüllen, J. Chem. Phys., 1998, 109, 392.

- 8 T. Grell and E. Hey-Hawkins, Eur. J. Inorg. Chem., 2020, 720.
- 9 J. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, Phys. Rev. Lett., 2003, 91, 146401.
- 10 V. N. Staroverov, G. E. Scuseria, J. Tao and J. P. Perdew, J. Chem. Phys., 2003, 119, 12129.
- 11 D. A. Pantazis, X.-Y. Chen, C. R. Landis and F. Neese, J. Chem. Theory Comput., 2008, 4, 908.
- 12 V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102, 1995.