Supporting Information

Noble metal-free bis-tridentate benzimidazole zinc(II) and iron(II)

complexes for selective CO₂ photoreduction

Ting Liu, Longxin Chen, and Duobin Chao^{*}

School of Materials Science and Chemical Engineering, Ningbo University,

Ningbo, Zhejiang 315211, China.

1. Experimental Section

1.1 Materials and instruments

All chemical reagents were purchased through commercial channels and used as received. Ligand 2,6-bis(1-methyl-1H-benzo[d]imidazol-2-yl)pyridine (abbreviated as bzimpy), 2,6-bis(1H-benzo[d]imidazol-2-yl)pyridine (abbreviated as bzimpy) and photosensitizer 4CzIPN were synthesized according to existing methods.^{1, 2} The fourier transform infrared spectrum (FT-IR) spectra were obtained on a Nicolet 670 FT-IR spectrometer. The UV-vis absorption spectra were measured on a G9 spectrophotometer. The CV and SWV tests were performed at room temperature with the electrochemical workstation CHI 660E. The working electrode, reference electrode and counter electrode were respectively glassy carbon electrode, Ag/AgCl electrode and platinum foil. The potential of the Ag/AgCl reference electrode was calibrated by the internal standard oxidation of ferrocene. The gas-phase products of the photocatalytic system were analyzed by Shimadzu GC-2014 (2 m x 3 mm packed column TDX-01, a hydrogen flame ionization detector, and N₂ as carrier gas).

1.2 Synthesis and Characterization of Complexes

Me-bzimpy: Yield: 60%. ¹H NMR (400 MHz, Chloroform-*d*), δ (ppm): 8.43 (d, J = 7.9 Hz, 2H), 8.06 (t, J = 7.9 Hz, 1H), 7.88 (dd, J = 6.8, 1.7 Hz, 2H), 7.48 (dd, J = 6.9, 1.7 Hz, 2H), 7.42-7.32 (m, 4H), 4.25 (s, 6H). ¹H NMR results of Me-bzimpy are consistent with previous report.¹

Bzimpy: Yield: 85%. ¹H NMR (400 MHz, Chloroform-*d*), δ (ppm): 8.51 (d, J = 8.1 Hz, 2H), 8.09-8.00 (m, 1H), 7.37 (dd, J = 5.8, 3.1 Hz, 2H), 7.28 (s, 6H). ¹H NMR results of bzimpy are consistent with previous report.¹

Fe1: Under a N₂ atmosphere, dissolved ligands Me-bzimpy (200 mg, 0.59 mmol) in 30 mL CH₃OH/CH₂Cl₂ (v/v=2/1), and then slowly added FeCl₂·4H₂O (60 mg, 0.3 mmol) in methanol solution. The reaction mixture was stirred at 75 °C for 12h. After cooling to room temperature, used a rotary evaporator evaporate and removed CH₂Cl₂ under reduced pressure, then NH₄PF₆ was added to precipitate a solid. The precipitate obtained by filtration was thoroughly washed with water, EtOH and CH₂Cl₂. **Fe1** was obtained (202 mg, yield: 78%). ¹H NMR (400 MHz, DMSO-*d*₆), δ (ppm): 9.16 (s, 1H), 8.97 (d, *J* = 7.8 Hz, 1H), 8.89-8.79 (m, 1H), 8.47 (d, *J* = 8.1 Hz, 1H), 8.36 (t, *J* = 7.4 Hz, 1H), 7.94-7.81 (m, 1H), 7.62 (d, *J* = 8.3 Hz, 1H), 7.25 (d, *J* = 7.4 Hz, 1H), 7.11 (t, *J* = 7.4 Hz, 1H), 7.02 (t, *J* = 7.3 Hz, 1H), 6.59 (d, *J* = 8.1 Hz, 1H), 3.32 (s, 6H). ¹H NMR results of **Fe1** are consistent with previous report.¹ Elemental analysis: found C 49.07, H 3.69, N 13.85 (calcd. C 49.24, H 3.34, N 13.67).

Fe2: The synthesis of Fe2 was similar to Fe1, and finally, a powder (143 mg, yield:

63%) was obtained. ¹H NMR (400 MHz, DMSO- d_6), δ (ppm): 8.41 (d, J = 7.8 Hz, 2H), 8.31-8.23 (m, 1H), 7.82 (dd, J = 6.0, 3.2 Hz, 4H), 7.40 (dd, J = 6.1, 3.1 Hz, 4H). ¹H NMR results of **Fe2** are consistent with previous report.¹ Elemental analysis: found C 46.97, H 3.07, N 14.63 (calcd. C 47.13, H 2.71, N 14.46).

Zn1: Under a N₂ atmosphere, dissolved the ligand Me-bzimpy (200 mg, 0.59 mmol) in 30 mL CH₃OH/CH₂Cl₂ (v/v=2/1), and then slowly added the methanol solution dissolved ZnCl₂ (41 mg, 0.3 mmol). The reaction mixture was stirred at 75°C for 12h. After cooling to room temperature, used a rotary evaporator evaporate and removed CH₂Cl₂ under reduced pressure, then NH₄PF₆ was added to precipitate a solid. The precipitate obtained by filtration was thoroughly washed with water, EtOH and CH₂Cl₂. **Zn1** was obtained (200 mg, yield: 83%). ¹H NMR (400 MHz, DMSO-*d*₆), δ (ppm): 8.43 (d, *J* = 7.9 Hz, 2H), 8.06 (t, *J* = 7.9 Hz, 1H), 7.88 (dd, *J* = 6.8, 1.7 Hz, 2H), 7.48 (dd, *J* = 6.9, 1.7 Hz, 2H), 7.42-7.32 (m, 4H), 4.25 (s, 6H). HR-ESI-MS (m/z): found 371.1111 for [Zn(Me-bzimpy)₂]²⁺ (calcd. 371.1124 C₄₂H₃₄N₁₀Zn²⁺); found 340.1547 for [M-H]⁺ (calcd 340.1562 C₂₁H₁₇N₅⁺, M = Me-bzimpy); found 362.1368 for [M-Na]⁺ (calcd 362.1382 C₂₁H₁₇N₅Na⁺, M = Me-bzimpy). Elemental analysis: found C 48.63, H 3.65, N 13.71 (calcd. C 48.78, H 3.31, N 13.54).

1.3 Photocatalytic CO₂ reduction

General procedure: Add 5 mL DMF or DMF/H₂O solution containing **Fe1/Fe2**, 4CzIPN and TEA into a glass tube sealed with a rubber stopper, at room temperature, degassed the solution with CO_2/N_2 for 15 minutes. After the solution was fully degassed, it was irradiated with the white LED lighting equipment (SMPC-LVWT, 420-650 nm, 3 W LEDs) provided by the Institute of Physical Chemistry & Chinese Academy of Sciences. The gaseous products (CO and H₂) generated by the system were sucked from the headspace of the glass tube with a gas-tight syringe in 200 µL aliquots and injected into the GC-2014 instrument equipped with TCD and FID detectors for analysis. The standard curve was obtained by injecting pure H₂ and CO.

2. Supplementary Figures

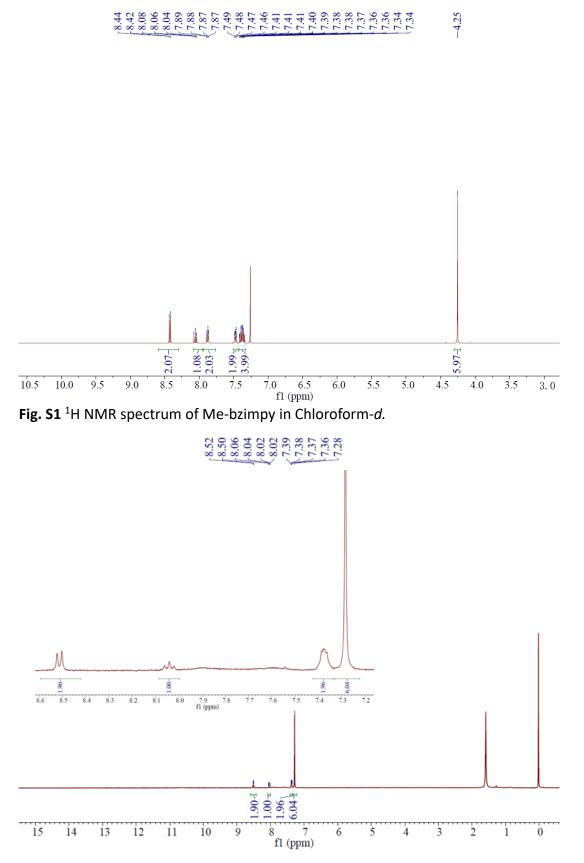
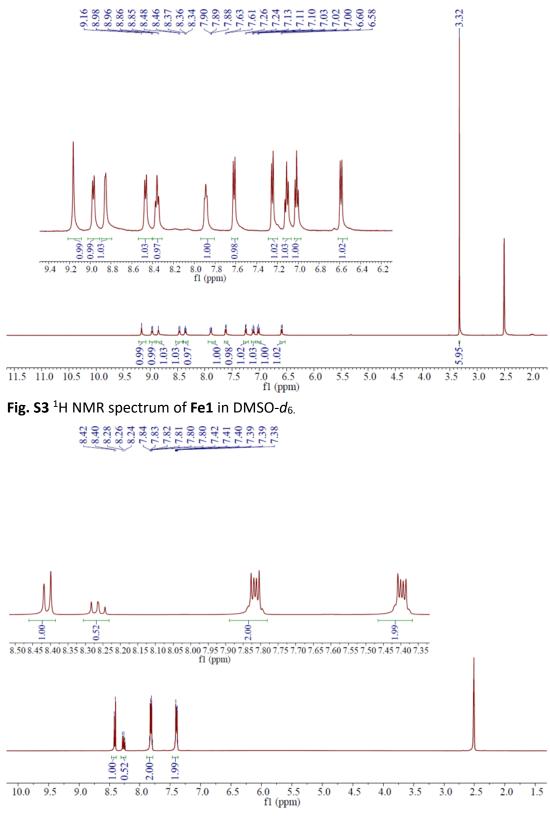



Fig. S2 ¹H NMR spectrum of bzimpy in Chloroform-d.

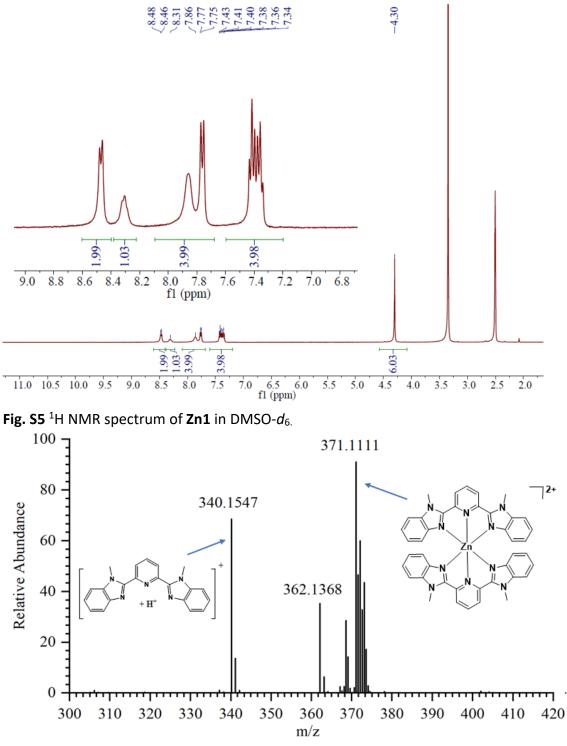


Fig. S6 HR-ESI-MS spectrum of Zn1.

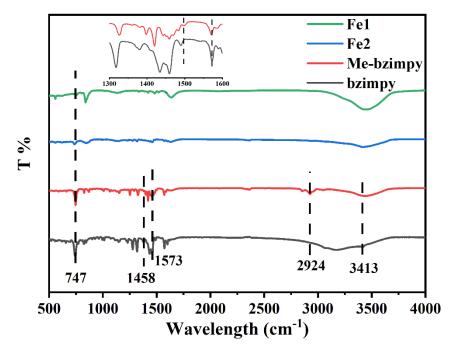


Fig. S7 FT-IR spectra of Fe1 (green line), Fe2 (blue line), Me-bzimpy (red line) and bzimpy (black line).

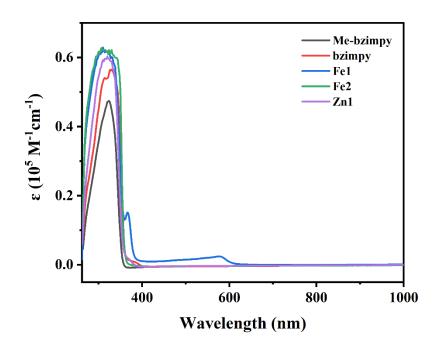
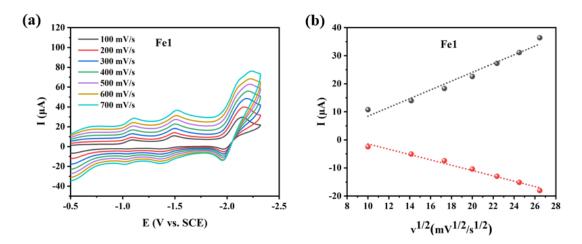
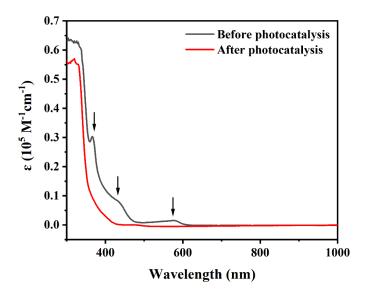




Fig. S8 UV-vis absorption spectra of 40 μ M Me-bzimpy (black line), bzimpy (red line), Fe1 (blue line), Fe2 (green line) and Zn1 (purple line) in DMF solution.

Fig. S9 (a) CVs of **Fe1** (1 mM) in DMF under a N₂ atmosphere at various scan rates (100-700 mV/s). (b) The square roots of currents (i_{pc} and i_{pa}) vs. scan rate ($v^{1/2}$) of **Fe1** at - 1.43 V.

Fig. S10 UV-vis absorption spectra of photocatalytic reaction solution using **Fe1** before and after photocatalysis.

Entry	Fe1 (μM)	4CzIPN(mM)	Volume of water (mL)	СО		H ₂	
				Products (µmol)	TON (Selectivity%)	Products (µmol)	TON
1	0	0.1	1	0.49	0	0	0
2	6	0.1	1	11.13	371	0	0
3	10	0.1	1	20.31	406(95.5)	0.96	19
4	20	0.1	1	31.05	311(98.1)	0.61	12
5	40	0.1	1	35.09	175(97.8)	0.78	16
6	10	0	1	0	0	0	0
7	10	0.01	1	9.59	192(96.6)	0.34	7
8	10	0.05	1	20.31	406	0	0
9	10	0.1	1	29.03	581(98.8)	0.35	7
10	10	0.2	1	41.05	821(99.4)	0.26	5
11	10	0.3	1	43.60	872(98.7)	0.57	11
12	10	0.4	1	43.96	879(99.4)	0.26	5
13	10	0.1	0	8.05	161	0	0
14	10	0.1	0.5	19.34	387(98.8)	0.23	5
15	10	0.1	1	20.31	406(95.5)	0.96	19
16	10	0.1	1.5	14.31	286(98.0)	0.29	6
17	10	0.1	2	14.53	291(99.5)	0.08	2
18	10	0.1	2.5	15.08	302(97.4)	0.41	8
19	10	0.1	3	0	0	0	0
20	10	0.1	3.5	0	0	0	0

Table S1 Summary of photocatalysis experiments under different concentrations of**Fe1**, 4CzIPN, and different volume ratios of water.

Conditions: use a visible light (3 W white LEDs, $\lambda = 420-650$ nm) to irradiate the CO₂saturated reaction solution for 120 min at room temperature. TON = n(product)/n(Fe1). entry 1-5: TONs of CO and H₂ with different concentrations of Fe1 (0-40 μ M) in 5 mL DMF/H₂O (v/v = 4/1) solution containing 4CzIPN (0.1 mM), and TEA (0.28 M); entry 6-12: TONs of CO and H₂ with different concentrations of 4CzIPN (0-0.4 mM) in 5 mL DMF/H₂O (v/v = 4/1) solution containing Fe1 (10 μ M), 4CzIPN and TEA (0.28 M); entry 13-20: TONs of CO and H₂ with different volumes of water in 5 mL DMF/H₂O solutions containing Fe1 (10 μ M), 4CzIPN (0.3 mM), and TEA (0.28 M).

Table S2 Time-dependent generation of CO in a 5 mL CO₂-saturated DMF/H₂O (v/v = 4/1) solution containing 10 μ M **Fe1** (entry 1-5), **Fe2** (entry 6-10) or **Zn1** (entry 11-15), 0.28 M TEA, and 0.3 mM 4CzIPN.

Entry	Cat	Irradiation time (min)	CO		H ₂	
			Products	TON	Products	TON
			(µmol)	(Selectivity%)	(µmol)	
1	Fe1	0	0	0	0	0
2		15	20.48	410(99.8)	0.04	1
3		30	35.64	713(99.1)	0.34	7
4		60	39.03	781(98.1)	0.77	15
5		120	43.91	878(99.2)	0.37	7
6	Fe2	0	0	0	0	0
7		15	2.19	44(98.6)	0.03	1
8		30	3.07	61(95.0)	0.16	3
9		60	3.17	63(94.9)	0.17	3
10		120	3.17	63(94.6)	0.18	4
11	Zn1	0	0	0	0	0
12		15	0.83	17	0	0
13		30	1.05	21	0	0
14		60	1.33	27	0	0
15		120	2.630	53	0	0

Catalyst	Photosensitizer	[Catalyst]/	TON(selectivi	ty %)	Deaction conditions	Deference	
Catalyst		[Photosensitizer]	CO H ₂ Reaction conditions		Reference		
Fe1	4CzIPN	10 μM / 0.3 mM	878(99.2)	7(0.8)	0.28 M TEA in DMF/H ₂ O (v/v = $4/1$),	This work	
					white LEDs (3 W, λ = 420-650 nm), 2h		
Zn1	4CzIPN	10 μM / 0.3 mM	53(~100 %)	0(0)	0.28 M TEA in DMF/H ₂ O (v/v = 4/1), white LEDs (3 W, λ = 420-650 nm), 2h	This work	
Fe(qnpy)(H ₂ O) ₂] ²⁺	Ru(phen) ₃ ²⁺	50 μM / 0.2 mM	14095(98)	360(2)	0.11 M BIH in MeCN/H2O (1:1, v/v), blue LED (460 nm), 68h	Chem. Commun., 2020, 56 , 6249- 6252. ³	
CoZn	Ru-PS	0.1 μM / 0.4 mM	6680(98)	136(2)	0.3 M TEOA in H ₂ O/MeCN (v/v = 1/4) LED light (450 nm),10h	ACS Sustain. Chem. Eng., 2021, 9 , 9273-9281. ⁴	
Re-THEA	-	0.4 mM	43(> 99)	< 1	0.3 mL TEOA in DMF, 500 W long-arc Xenon lamp (λ ≥ 400 nm), 12h	ChemSusChem, 2020, 13 , 6284- 6289. ⁵	
Ni-IDC	Ru(bpy) ₃ ²+	10 μM / 0.45 mM	2264.8(95)	119.2(5)	0.029 mM BIH in DMF/TEOA (v/v = 5/1), LED blue light (460 nm), 12h	Inorg. Chem. Commun., 2020, 122 , 108269. ⁶	
Co(bpy) ₂ Cl ₂	Acriflavine (Acr)	2 μM / 0.4 mM	100(~100 %)	0(0)	0.3 M TEOA in H ₂ O/MeCN (v/v = 1/4), 300 W Xe lamp ($\lambda \ge 400$ nm), 5h	<i>Mol. Catal.</i> , 2021, 500 , 111299. ⁷	

Table S3 Comparison of CO₂ photoreduction with recent molecular complexes.

Notes and references

1. J. Zhang, D. Campolo, F. Dumur, P. Xiao, J. P. Fouassier, D. Gigmes and J. Lalevée, J. Appl. Polym. Sci., 2016, 54, 2247-2253.

2. J. Luo and J. Zhang, ACS Catal., 2020, **10**, 14302-14303.

3. Y. Qin, L. Chen, G. Chen, Z. Guo, L. Wang, H. Fan, M. Robert and T. C. Lau, *Chem. Commun.*, 2020, **56**, 6249-6252.

- 4. D. Liu, M. Zhang, H.-H. Huang, Q. Feng, C. Su, A. Mo, J.-W. Wang, Z. Qi, X. Zhang, L. Jiang and Z. Chen, ACS Sustain. Chem. Eng., 2021, 9, 9273-9281.
- 5. K. H. Chen, N. Wang, Z. W. Yang, S. M. Xia and L. N. He, *ChemSusChem*, 2020, **13**, 6284-6289.
- 6. Q.-Q. Xu, R. Liu, W.-H. Mu, R. Chen, B. Huang, Z. Yang and J.-F. Kou, *Inorg. Chem. Commun.*, 2020, **122**, 108269.
- 7. X. Chen, Y. Wei, W. Sun, X. Meng, S. Hao and Y. Gao, *Mol. Catal.*, 2021, **500**, 111299.